Students’ Engagement through Computational Thinking and Robotics
DOI:
https://doi.org/10.55630/dipp.2018.8.21Keywords:
Robotics, Technology-enhanced learning, Inquiry-based learning, Learning by doingAbstract
Nowadays, school systems are underlining the relevance of “computational thinking” and educational robotics not only in STEM (science, technology, engineering and mathematics) education, but also in other humanistic disciplines as reinforcement of student creativity and problem-solving capacity. This paper presents an example of educational robotics tool used to engage students in their learning process through the manipulation and construction of artifacts.References
Academic Development Directorate. (2015/2018). Technology Enhanced Learning Handbook. York: York St John University.
A., R. (2012). Framework for the enhanced use of technology in learning & teaching. Plymouth: UCP Marjon.
Allan, W., Coulter, B., Denner, J., Erickson, J., Lee, I., Malyn-Smith, J., & Martin, F. (2010). Computational Thinking for Youth. ITEST Small Working Group on Computational Thinking .
Angeli C., Voogt J., Fluck A., Webb M., Cox M., Malyn-Smith J., Zagami J. (2016). A K-6 Computational Thinking Curriculum Framework- Implications for Teacher Knowledge. Educational Technology & Society , 19(3) , 47–57.
Bocconi S. et alii. (2016). Developing Computational Thinking in Compulsory Education. Bruxelles: European Commission.
Bosciani M., Beri M. (2016). Imparare a programmare con Scratch. Il manuale per programmatori dai 9 anni in su. Adria (RO): Apogeo.
CSTA Standards Task Force. (2016). [Interim] CSTA K-12 Computer Science Standards. New York: CSTA.
Dochshanov A.; Tramonti M. (2018). Re-making Classroom Borders with TINKERING Approach. New Perspectives in Science Education. Florence, Italy: LibreriaUniversitaria.it.
Dochshanov, A. (2017). “TINKERING” as Learning Reinforcement towards Multidisciplinarity in Research-oriented Education. EDULEARN17 Proceedings (pp. 9855-9859). Barcellona, Spain: IATED.
Dochshanov, A. (2018). Multidisciplinary Roadmap for STEM education: a case study. INTED2018 Proceedings (pp. 2278-2282). Valencia: IATED.
Kaposi, G., Szkaliczki, T., Márkus, Z. L., Luchev, D., Goynov, M., & Paneva- Marinova, D. (2013). Mobile Exploring of the Bulgarian Iconography through QR Codes in the GUIDE@HAND Tourist Guide Application. International Conference on Digital Presentation and Preservation of Cultural and Scientific Heritage, September 18-21, 2013, Veliko Tarnovo, Bulgaria. III , pp. 44-52. Sofia: Institute of Mathematics and Informatics - BAS.
Lee, I. et alii. (2011). Computational thinking for youth in practice. ACM Inroads , 2(1) , 32–37.
Luchev, D., Paneva-Marinova, D., Pavlov, R., Kaposi, G., Márkus, Z., Szántó, G., et al. (2016). Game-based Learning of Bulgarian Iconographical Art on Smart Phone Application. Proceeding of the International Conference on e-Learning’16, September, 2016 (pp. 195-200). Bratislava, Slovakia: Ruse : University of Ruse.
Márkus, Z. L., Kaposi, G., Szántó, G., Szkaliczki, T., Veres, M., Weisz, Z., et al. (2017). Mobile Exploring of Bulgarian Cultural and Scientific Assets. Serdica Journal of Computing .
Márkus, Z. L., Kaposi, G., Szkaliczki, T., Luchev, D., & Pavlov, R. (2015). BOOK@HAND BIDL: Mobile Exploring of the Bulgarian Iconography by Using Panorama Pictures. International Conference on Digital Presentation and Preservation of Cultural and Scientific Heritage, 26-28, 2016, Veliko Tarnovo, Bulgaria. V , pp. 109-120. Sofia: Institute of Mathematics and Informatics - BAS.
Miotti B., Guasti L. (2018). Due sistemi modulari per la robotica educativa: SAM e littleBits. Firenze: INDIRE.
MIUR Comitato Scientifico Nazionale. (2018). Indicazioni Nazionali e Nuovi Scenari. Rome: MIUR - Ministero dell’Istruzione dell’Università e della Ricerca.
Nagy, J., Márkus, Z. L., Kaposi, G., Szántó, G., Szkaliczki, T., & Vass, N. (2016). New Tourist Service Based on Virtual Reality Glasses in the Town of Miskolc, Hungary. International Conference on Digital Presentation and Preservation of Cultural and Scientific Heritage, September 26-28, 2016, Veliko Tarnovo, Bulgaria. VI , pp. 71- 92. Sofia: Institute of Mathematics and Informatics - BAS.
Papert, S. (1994). I bambini e il computer. Milano: Rizzoli.
Pavlov, R., Paneva-Marinnova, D., Goynov, M., & Pavlova-Draganova, L. (2010). Services for Content Creation and Presentation in an Iconographical Digital Library. Serdica Journal of Computing (4), 279-292.
Pavlova-Draganova, L., Georgiev, V., & Draganov, L. (2007). Virtual Encyclopaedia of Bulgarian Iconography. International Journal “Information Technologies&Knowledge” (1(3)), 267-271.
Tramonti, M. (2017a). Mathematics Education Reinforced through Innovative Learning Processes. EDULEARN17 Proceedings (pp. 9279-9284). Barcelona (Spain): IATED.
Tramonti, M. (2017b). Reinforcing Learning Setting through the Use of Digital Tools. Digital Presentation and preservation of Cultural and Scientific Heritage 7th Edition (pp. 159-167). Sofia: Institute of Mathematics and Informatics - BAS.
Urschitz T., Moro M. (2014). “Low threshold: How inclusive is Constructionism? Proceedings of the 3rd International Constructionism Conference "Constructionism and Creativity". Vienna: OCG.
Wing, J. M. (2006). Computational thinking. Communications of the ACM , 49(3) , 33- 35.
Wing, J. M. (2011). Research Notebook: Computational Thinking-What and Why? The link .