Digital Imaging Techniques in Archaeometry: The Case of an Ancient Crucifixion Icon

Authors

  • Magdelena Stoyanova Ca’ Foscari University, Centro Interdisciplinare di Studi Balcanici ed Internazionali, Venice, Italy
  • Diego Stoyanov University of Padova, Faculty of Engineering, Padova, Italy
  • Lilia Pavlova Laboratory of Telematics, Bulgarian Academy of Sciences, Sofia, Bulgaria

DOI:

https://doi.org/10.55630/dipp.2022.12.16

Keywords:

Digital Image Post Processing, Imaging Techniques, Technical- Technological Analysis, Hristofor Žefarović, Painting Techniques

Abstract

An ancient Crucifixion icon has been studied using imaging techniques integrated with appropriated visualizations. Relevant parameters and suitable algorithms have been selected in a proper sequence to segment the studied images into meaningful elements functional to the attribution of the icon through analysis of the employed materials and techniques. The cross-referencing of the results allowed to identify three main phases in the realization of the painting, to describe their extension, character and determine the possible authors as: Cretan/Ionian painters, '500-' 600 (1 st phase); Hristofor Žefarović, Western Balkans or Vienna, 1730-1753 (2 nd phase); Placido Fabris / Michelangelo Barbini, Venice, mid 19 th c. (3 rd phase).

References

Antoniou, G., Van Harmelen, F. (2004) Web ontology language: Owl. Handbook on ontologies (pp. 67–92). Springer Berlin Heidelberg.

Le Boeuf, P., Doerr, M., Ore , C. E., Stead, S. (2018). Definition of the CIDOC Conceptual Reference Model Produced by the ICOM/CIDOC Documentation Standards Group, Continued by the CIDOC CRM Special Interest Group. Version 6.2.4. from [26/11/2018].

Brewster, C., O'Hara , K. (2007). Knowledge representation with ontologies: Present challenges - Future possibilities. International Journal of Human-Computer Studies 65(7), 563–568.

Coburn, E., Light, R., McKenna, G., Stein, R., Vitzthum, A. (2010) LIDO – Lightweight Information Describing Objects. Version 1.0. [Online]

Cruz, I. F., Xiao, H. (2003). Using a layered approach for interoperability on the semantic web. Proceedings of the 4th IEEE International Conference on Web Information Systems Engineering (WISE). (pp. 221–231).

Déribéré, M. (1954). Les applications pratiques des rayons infrarouges. Paris: Dunod.

Durand, N., Derivoux, S., Forestier, G., Wemmert , C. (2007) Ontology -based object recognition for Remote Sensing image interpretation . Proceedings of 19th IEEE International Conference on Tools with Artificial Intelligence , 2007, Paris, pp. 472– 479.

English Heritage (2012) MIDAS Heritage – The UK Historic Environment Data Standard, v1.1. English Heritage.

Europeana (2022). Retrieved May 30, 2022 from https://www.europeana.eu/portal

Fernie, K., Gaverilis, D., Angeli, S. (2013). The CARARE metadata schema v2.0. Europeana Carare project.

Gibson, Н. L. (1978). Photography by infrared, its principles and applications (Walter Clark ed.), New York -Chichester-Brisbane- Toronto: John Wiley & Sons.

Gosden, C., Marshall, Y. (1999). The cultural biography of objects. World Archaeology, 31(2), 169–178.

Jakus , G., Milutinovic, V., Omerović , S., Tomažič , S. (2013). Concepts, Ontologies and Knowledge Representation. Springer Briefs in Computer Science . London: Springer Verlag. http://dx.doi.org/10.1007/978-1-4614-7822-5

Louvre Collection (2022). Retrieved May 30, 2022 from https://www.louvre.fr/en/moteur-de-recherche-oeuvres

Maillot, N. (2005) Ontology based object learning and recognition . Ph. D. Thesis, University of Nice Sophia Antipolis, Nice.

Odat , S. A. (2014). A semantic e-science platform for 20th century paint conservation (Doctoral dissertation). University of Queensland, Australia.

Phong, B.T. (1975). Illumination for Computer Generated Pictures. Communications of the ACM 18, 6:3-7.

Stoyanova, M., Pavlov,, R., Paneva-Marinova D., Pavlova, L. (2014). The IFIDA Project: Intelligent Fast Interconnected Devices and Tools for Applications in Archaeometry and Conservation Practice. Digital Presentation and Preservation of Cultural and Scientific Heritage , IV, 256-262.

Stoyanova, M. (2015). Spectral Investigation of Serbian Baroque Icons for their Scientific Documentation . ( Technical Report Reference COST -STSM-TD1201-48807, Affiliation: COST TD1201, January 2015).

Stoyanova, M., Stoyanov, D., Pavlova, L. (2018) . Non Algebraic Techniques for Digital Processing of Historic Painting Research Documentation. Digital Presentation and Preservation of Cultural and Scientific Heritage, VIII, 121-132.

Stoyanova, M., Lukić , T. (2015). Mapping the Conservations Status of Easel Painting. Craquelure Structure Visualization by Binary Image Segmentation Approach. Digital Presentation and Preservation of Cultural and Scientific Heritage , V, 141- 155.

Stoyanova, M., Maximova, G., Mazina, A., Provorova, I. (2017). An Integrated TechnicalTechnological. München: GRIN Verlag.

Stoyanova, M., Pavlova, L. (2017). Deep Belief Networks for Multimodal, Images Based Non Contact Material Characterization. Digital Presentation and Preservation of Cultural and Scientific Heritage, VII, 191-204.

Stoyanova, M., Stoyanov, D., Pavlova, L. (2020). Digital Reconstruction by Imaging and Post Processing Techniques of the Nicopeia Icon Transformations. Digital Presentation and Preservation of Cultural and Scientific Heritage , X, 173-184.

Stoyanova, M. (2022). Un’antica icona iella Crocifissione e la sua secolare storia. Atti dell’Istituto Veneto di scienze, lettere ed arti (forthcoming).

Downloads

Published

2022-09-07

How to Cite

Stoyanova, M., Stoyanov, D., & Pavlova, L. (2022). Digital Imaging Techniques in Archaeometry: The Case of an Ancient Crucifixion Icon. Digital Presentation and Preservation of Cultural and Scientific Heritage, 12, 193–204. https://doi.org/10.55630/dipp.2022.12.16

Most read articles by the same author(s)

<< < 1 2 3 > >>