Preserving Linguistic Heritage for Generations to Come!


  • Adarsh Appannagari University of the West of England, Bristol, United Kingdom
  • Manideep Chittineni University of the West of England, Bristol, United Kingdom
  • Sathvik Jetty University of the West of England, Bristol, United Kingdom
  • Zinnia Sarkar University of the West of England, Bristol, United Kingdom
  • Vinod Eslavath University of the West of England, Bristol, United Kingdom
  • Raj Ramachandran University of the West of England, Bristol, United Kingdom
  • Emmanuel Ogunshile University of the West of England, Bristol, United Kingdom



Linguistic Heritage, Tamil, Speech to Text, Indigenous Method, Software Engineering


Speech to Text is the ability to convert spoken word to text. There are many speech to text conversion applications available for different languages. Tamil is an ancient classical language which is vastly spoken in southern parts of India, Sri Lanka, Malaysia, and Singapore. The speech to text application is designed from an indigenous perspective to enable the native speakers to preserve their linguistic heritage. The application was developed using agile methodology and the testing of the application suggested that the existing API do not support in the notion of preserving the language in its original form.


Adetunmbi, O., Obe, O., & Iyanda, J. (2016). Development of Standard Yorùbá speechto-text system using HTK. International Journal of Speech Technology, 19 (4), 929- 944. doi:10.1007/s10772-016-9380-2

Choi, J., Gill, H., Ou, S., Song, Y., & Lee, J. (2018). Design of Voice to Text Conversion and Management Program Based on Google Cloud Speech API. International Conference on Computational Science and Computational Intelligence (CSCI) . doi:10.1109/csci46756.2018.00286

Dawson, L., Johnson, M., Suominen, H., Basilakis, J., Sanchez, P., Estival, D., . . . Hanlen, L. (2014). A usability framework for speech recognition technologies in clinical handover: A pre-implementation study. Journal of Medical Systems, 38 (6). doi:10.1007/s10916-014-0056-7

Huang, Y.-M., Liu, C.-J., Shadiev, R., Shen, M.-H., & Hwang, W.-Y. (2014). Investigating an application of speech-to-text recognition: a study on visual attention and learning behaviour. Journal of Computer Assisted Learning, 31 (6), 529-545. doi:10.1111/jcal.12093

Kailasapathy, K. (1979). The Tamil purist movement: a re-evaluation. Social scientist , 23-51

Këpuska, V., & Bohouta, G. (2017). Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx). International Journal of Engineering Research and Applications, (3), 20-24. doi:10.9790/9622-

Lee, L.-S., Glass, J., Lee, H.-y., & Chan, C.-a. (2015). Spoken Content Retrieval— Beyond Cascading Speech Recognition with Text Retrieval. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23 (9), 1389-1420. doi:10.1109/taslp.2015.2438543

Mann, D., Frederic, K. Weston, N., Ramachandran, R. & Ogunshile, E (2019). Tamil

/McDonough, J., & Johnson, K. (1997). Tamil liquids: An investigation into the basis of the contrast among five liquids in a dialect of Tamil. Journal of the International Phonetic Association , (1-2), 1-26.

Ohnishi, Y., Yamaguchi, S., Shimoikura, Y., Nishino, K., Kondo, H., & Hayashi, A. (2019). Prototype Design of Playback and Search System for Lecture Video Content using Google Cloud API. Procedia Computer Science, , 1517-1526. doi:10.1016/j.procs.2019.09.322

Rustam, S., Huang, Y.-M., Shing, N., & Hwang, W.-Y. (2014). Review of Speech-to- Text Recognition Technology for Enhancing Learning. Journal of Educational Technology & Society, 17 (4), 65-84. Retrieved April 26, 2020

Ramachandran, R., 2018. Predicting user acceptance of Tamil speech to text by native Tamil Brahmans (Doctoral dissertation, Sheffield Hallam University).

Shulman, D. (2016). Tamil . Harvard University Press.

Simpson, J. (2019). 5 Best Speech-to-Text APIs | Nordic APIs |. Retrieved April 20, 2020, from

Stinson, M., Elliot, L., & Kelly, R. (2017). Deaf and Hard-Of-Hearing High School and College Students’ Perceptions of Speech-To-Text and Interpreting/Note Taking Services and Motivation. Journal of Developmental and Physical Disabilities, 29 (1), 131-152. doi:10.1007/s10882-017-9534-4

Subramanian, H., & Pethuru, R. (2019). Hands-On RESTful API Design Patterns and Best Practices: Design, develop, and deploy highly adaptable, scalable, and secure RESTful web APIs. Birmingham, UK: Packt Publishing. Retrieved April 20, 2020

The American Heritage guide to contemporary usage and style (1st ed.). (2005). Boston: Houghton Mifflin. Retrieved April 04, 2020

Virtanen, T. (2013). Techniques for noise robustness in automatic speech recognition. Chichester: Wiley-Blackwell. Retrieved April 04, 2020

Zhihong, Z., Pantic, M., Roisman, G., & Huang, T. (2009). A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, (1), 39-58. doi:10.1109/tpami.2008.52




How to Cite

Appannagari, A., Chittineni, M., Jetty, S., Sarkar, Z., Eslavath, V., Ramachandran, R., & Ogunshile, E. (2020). Preserving Linguistic Heritage for Generations to Come!. Digital Presentation and Preservation of Cultural and Scientific Heritage, 10, 259–266.