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Abstract. This paper presents the main concepts of a project under 

development concerning the analysis process of a scene containing a large 

number of objects, represented as unstructured point clouds. To achieve what 

we called the ―optimal scene interpretation‖ (the shortest scene description 

satisfying the MDL principle) we follow an approach for managing 3-D objects 

based on a semantic framework based on ontologies for adding and sharing 

conceptual knowledge about spatial objects. 
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1 Introduction 

During the last couple of years, point clouds have emerged as a new standard for the 

representation of largely detailed models. This is partly due to the fact that range 

scanning devices are becoming a fast and economical way to capture dense point 

clouds. These devices typically produce an unstructured cloud of sample points 

(possibly with noise), where each point encodes information on the shape attributes, 

such as 3D position, surface normal, surface color, material properties, etc. However, 

the huge amount of data captured during the acquisition phase may limit the 

applicability of the algorithms and methodologies currently developed for 3D 

computer vision. At the same time, it is obvious that the process of extracting useful 

knowledge or models from unstructured information spaces (and a point cloud is such 

a space) is a topic situated at the junction of several research fields, as spatial data 

mining, computer graphics, pattern recognition, machine learning, spatial reasoning, 

data bases/data warehousing, etc. Applications based on the manipulation and the 

analysis of such points are extensively used in many disciplines, such as mechanical 

engineering, architecture, bio-medicine, robotics, but also in other domains such as 

history and archeology. 

The goal of this paper is to detail a framework developed to represent, to recognize 

and to retrieve objects in a point cloud, based on the generic idea published in the 

paper [1]. The database used to check the validity of our approach is a collection of 

multi-dimensional points having several characteristics along with the spatial 

location. This data stems from a large project conducted by the Kármán Center [2], 

for which the Pantheon in Rome was scanned (the result is a 3D digital model with 
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more than 620,000,000 points, see Error! Reference source not found.). Therefore, 

if the performance of the final system is proved to be satisfactory, the application will 

be integrated into the Pantheon project at the disposal of the archaeologists and 

historians. 

 

Fig. 1. 3D point cloud of the Pantheon in Rome 

One of the main issues with this type of datasets (aside the basic data management) 

is the interpretation of a scene.  The interpretation of a scene (query data consisting of 

partial 3D point clouds of (un)known 3D objects) is normally defined as knowing 

which model is located where in the scene. Such an interpretation binds the entities in 

the scene to the models which exist in form of prior knowledge. Scene interpretation 

represents one of the most known concepts which emphasize the evolution over time 

of the research relation between Computer Vision (CV) and Knowledge 

Representation (KR). If, in the early days, research in CV often involved development 

of semantic representations and inference mechanisms [3], the difficulties of this 

approach (scene interpretation tending to be highly unreliable) pushed the research 

toward a quantitative approach, based on statistical methods. In the lasts years, these 

methods apparently proved their limits and Computer Vision became again one of the 

goal of Artificial Intelligence ([4], [5]), especially when data are incomplete or 

ambiguous. There is no universally accepted definition of what scene interpretation 

means, especially as other similar concepts are used in the literature (as scene 

understanding or scene modelling), but at least one aspect may be considered as 

acquired: the process implies a knowledge representation framework. Reiter and 

Mackworth [6] considered the interpretation as an instantiation of a conceptual 
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knowledge base consistent with evidence, i.e. with information about the scene 

delivered by sensors and low-level image analysis. Because a scene interpretation 

may contain arbitrary propositions (for example about objects outside the field of 

view), further criteria are required to narrow down the interpretation space and select 

a "best" interpretation [7]. In [8] scene interpretation is modelled as a stepwise 

process which exploits taxonomical and compositional relations between aggregate 

concepts (represented in a ALCF(D) Description Logic), while incorporating visual 

evidence and contextual information. The same approach, but using an automatic 

process, is described in [9]. Finally, different scene interpretation systems were 

developed, as RACER [10] (based on a particular DL system) or SCENIC [11] (based 

on a configuration system), which provides powerful retrieval mechanisms along with 

other inference processes. 

Following the recent trend consisting in applying the AI point of view on 

Computer Vision problems and tasks, we propose an extended definition of the 

"interpretation" task (closed to what was called "high-level scene interpretation" [7]): 

the task consists in the construction of a symbolic description including scene 

elements (objects or higher-level entities) and predicates (class memberships and 

spatial relationships between these elements).  This extension allows the acquisition 

of a new kind of knowledge, concerning the possible repeated, regular patterns of 

objects spatial distributions. Furthermore, if the set of models and the set of spatial 

relationships are the elements of a spatial description language, then the concept of 

optimal scene interpretation is well defined, expressing the shortest description (in 

this language) of the scene in terms of known objects and simplest neighborhood 

relations between them.  

Therefore, the goal of our project is the establishment of a flexible approach 

(including a framework, a methodology, processing methods and finally a working 

system) allowing the optimal interpretation of a scene (according to our extended 

definition), containing a large number of objects. To reduce the complexity of the 

interpretation process in the perspective of the large diversity of real-world situations, 

the project's framework is based on the following assumptions: 

 the scene or the model point clouds are not uniformly sampled nor overlapping; 

 the objects of interest are rigid, free-form objects; 

 the models exists in the database prior to recognition;  

 a description language, based on the models from database and a selected set of 

spatial relationships, is defined and encoded as a set of fixed ontologies 

Stated succinctly, the design of the scene interpretation system (in the following 

denoted RRR system) involves a three stage processing: 

1. Representation: The objective is to derive from the point cloud a rich, compact yet 

meaningful description of the object for efficient storage and for fast and accurate 

retrieval during recognition. 

2. Recognition: The derived spatial and geometric descriptions of the partial point 

cloud from the scene are compared with stored models of objects in order to 

identify which of those objects are present in the scene. This involves the tasks of 
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instance classification, determination of alignment parameters (rotation, 

translation) and localization. 

3. Retrieval: The spatial relationships existing between the objects in the scene are 

discovered. In a first phase, these relations are analyzed by a pattern finding 

algorithm to extract possible regular patterns implying the models. In a second 

phase, a specific ontology describing the scene (which includes as instances the 

previous discovered relations), is processed to extract an optimal (according to the 

Minimum Description Length Principle) scene description. 

The first two processing stages of the RRR system (described in the Section 2) are 

well documented in the literature (methodologies and algorithms) and therefore, 

during this project, we are only conducting performance-comparison studies in order 

to select the best solution regarding the data type we analyze (point clouds). On the 

other hand, the Retrieval phase (detailed in Section 3) represents - in our opinion, 

after a deep as far as possible bibliography study – an innovative idea which is 

directly linked to a new approach in computer graphics, the use of techniques and 

methodologies from Artificial Intelligence and Knowledge Management for scene 

understanding (see [12], [13], [14]). The Reference and the User ontologies 

(described in Section 4) are designed to support the semantic integration of 

architectural structures (an example of how the Corinthian column concept is 

represented as an ontological definition by a composition of Basic3DShapes objects is 

presented in detail).  

2 The RRR Model (Representation, Recognition, Retrieval) 

2.1 The Representation Stage 

Despite the different application contexts of free-form object models, some criteria 

apply to representations regardless of the domain. According to Brown [15], the 

general mathematical properties exhibited by object representation schemes are 

ambiguity, conciseness and uniqueness. The ambiguity or completeness measures the 

representation's ability to completely define the object in the model space, the 

conciseness represents how efficiently or compactly the description defines the object, 

whereas the uniqueness is used to measure if there is more than one way to represent 

the same object, given the construction methods of representation. 

The choice of the object representation is one of the most important decisions for 

the performance of our RRR system, and must be accompanied by robust techniques 

for extracting compatible features from both the object model and the input point 

cloud. Between the two fundamental categories of representation, object-centered and 

view-centered, the nature of input data and the objective of our project clearly impose 

techniques from the first category, which attempt to describe the entire 3D volume 

occupied by the object. 

As we already mentioned, the choice of the object model is based on a 

performance-comparison study of the known various 3D object representations (see 

[16]) (boundary-based methods [17], volumetric descriptors [18] or spherical 
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representations based on generalized cones [19]) with a particular attention to the 

capacity to deal with missing data (undersampling of the surface), with noisy data and 

with the lacking of connectivity information (unstructured point cloud). Our implicit 

option is the polygonal mesh representation, especially adapted for point cloud in [20] 

[21]. 

2.2 The Recognition Stage 

Whereas the problem of finding and identifying objects in single-object scenes with 

no occlusion has been well studied and many systems designed show good results 

[22], the same problem, but for multiple objects with the possibility of occlusion and 

background clutter is much harder. Recognition is performed by matching features 

derived from the scene with those stored in the model database. Some of the most 

popular and important approaches to the recognition and localization of 3D objects 

are: 

 Graph matching. This approach captures the structural properties of objects. The 

scene and the model are described using attributed graphs or shock graphs, where 

each vertex characterizes a scene or a model feature and the edge between vertices 

represents the relation between two features. 

 Information-theoretic matching. To align the scene image with the model image, a 

first proposal was the search of the transformation which maximizes the mutual 

information between the scene and the model. Another proposal was the entropic 

methods (through an entropic graph), which have the advantage of capturing non-

linear relations between the features in order to improve the discrimination power. 

 Hypothesize and test. In the hypothesize and test paradigm, a transformation (a set 

of non-linear equations) from the model's coordinate frame to the scene's 

coordinate frame is hypothesized. The alignment of the scene features with the 

model features is accepted or rejected based on matching error. 

 Iterative model fitting. This approach is used when 3D objects are described using 

parametric representations. There is no feature computation or correspondence 

determination between model and scene features. Object recognition and pose 

estimation are reduced to estimating the orientation parameters of the model from 

the scene data, and matching with the stored parametric representations. 

Given the nature of data, our choice for the recognition process points to the 

matching algorithm proposed in [23], a thermo-dynamically inspired algorithm 

designed to determine a correspondence between the scene and the model point 

clouds by combining the goodness of the graph-based structural approaches and the 

entropy-based spatial matching approaches. The maximization of the proposed 

objective function which captures the structural and spatial differences between point 

sets, leads to the desired correspondence. 
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3 The Retrieval Stage 

A real useful and valuable functionality of an intelligent computer vision system 

would be its capacity to describe an unknown scene as concisely as possible in terms 

of known objects, transformations of them, and of their mutual spatial relationships. 

Therefore, we extend the meaning of the scene interpretation process by considering 

that an optimal interpretation of a scene is a description (based on a specific spatial 

language) which explains the scene in terms of the smallest number of known objects 

(i.e. known models) and simplest neighborhood relations between them, according to 

the Minimum Description Length Principle [24].  A simple description language 

allowing the scene interpretation must include at least rigid, opaque 3D objects, and a 

set of spatial relationships. From a technical viewpoint, our approach is to ―encode‖ 

such description language inside a dynamically created semantic layer, added to our 

3D point cloud, and expressed as a set of ontologies (in the following denoted as the 

reference ontology) comprising the description of different systems and representation 

models that might be used.  

A reasoning engine processes the low-level knowledge structures captured in the 

reference ontology. The goal of this reasoning is to deduce new, high-level 

knowledge and to signal inconsistencies in the conceptualizations. Two main 

approaches can be applied: using general logic based inference engines or using 

specialized algorithms (Problem Solving Methods). The logic based inference engines 

may be classified1 by the expressivity of the logic they can reason with, from Higher 

Order Logics (HOL) down to different subsets of First Order Logic (including fuzzy 

or probabilistic approaches). In general, more expressive logics are more difficult to 

reason with, where in the worst case scenario there exist no strategies that could 

ensure the termination of the reasoning process. Concerning the second approach, 

each PSM represents a declarative, reusable description of reasoning for solving a 

particular type of problem. 

Based on the information learned during the recognition stage (objects instances 

found in the scene and their exact localization), the system send queries to the 

reasoning engine concerning the possible binary spatial relationships between the 

found instances. The set of queries evaluated as true (positive queries) together with 

the set of object instances in the scene form then the raw data from which the optimal 

scene interpretation is generated. According to the MDL Principle, the optimal 

description minimizes the length of the set {theory, data encoded using the theory}. 

Consequently, to different types of theories corresponds different optimal 

descriptions, even if all are based on the same data. In our opinion, two types of 

theories must be considered as appropriate: 

 Rules. Significant rules between the classes (models) of the object’s instances are 

extracted using the spatial association rules approach [25]. Another approach, 

derived from similar applications on natural language [26], generates the 

grammatical rules underlying the language described by the set of positive queries 

(considered as correct sentences) using a semi-supervised learning algorithm. The 

                                                           
1 http://www.semanticweb.org/inference.html 
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optimal description minimizes the length of rules, together with the exceptions to 

these rules.   

 Ontology. As one of the form expressing the paradigm of concept formation 

(together with clustering or Concept Lattices), an ontology is a conceptual structure 

used for concisely characterizing data. If we define the length of an ontology as the 

number of nodes plus the number of links of type is-a or has-a, then an algorithm 

for creating an ontology, starting from the set of positive queries (statements) and 

using MDL as guiding principle, can be designed [27]. The algorithm must 

iteratively search analogies or isomorphism in contiguous sets of statements, where 

two statements are connected if they share a common symbol (instance or spatial 

relation), and a set of statements is contiguous if there’s a path within the statement 

set from every statement in it to every other statement in the set.  

Each type of optimal description (based on rules or on ontology) has its own 

advantages/drawbacks regarding the comprehensibility of the final result (an ontology 

is more adapted for a visual representation than a set of rules), and therefore must be 

chosen according to the interest of the final user of the RRR system. 

As we already mentioned, the description language is encoded as a semantic layer 

over the raw data recorded as unstructured clouds of sample points. For architectural 

data (the Pantheon project) we defined [28] a system based on two components - an 

efficient storage module for 3D data and a concept-based representation module. The 

second module (detailed in the next section) is in fact the reference ontology designed 

to support the semantic integration of architectural structures (often based on very 

complicated models, taking into consideration technical and aesthetic aspects). 

4 The Reference and User Ontology 

4.1 The Reference Ontology 

The semantic layer is mainly composed of two groups of ontologies: the upper (basic) 

group and the lower (user) group. This difference between the used ontologies has 

been shown already in [29]. Without losing in generalization, the user can describe a 

spatial object in a specific environment by actually constructing the 3D object from 

elementary shapes. Each elementary shape is described mainly by a transformation 

(scaling, translation, rotation), one or more positions and one or more dimensions. 

Since each transformation can be expressed in different ways or is shape–dependent, 

the upper ontologies comprise the description of different systems and mathematical 

models that might be used [28]: 

1. The Coordinate Systems Ontology. This ontology defines a few systems for 

describing a position in space: cartesian, spherical and cylindrical — the ontology 

being easily extensible with other systems. Each coordinate system has properties 

that map its specific characteristics: e.g. the CartesianSystem has three length–

based properties (corresponding to the x–, y– and z–coordinates), while the 
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CylindricalSystem has two metric–like properties and a degree–like property that 

correspond to the radial, vertical and azimuth values, respectively. 

2. The Transformation Systems Ontology. The same approach has been used for the 

transformations ontology, i.e. each instantiable rotation system has predefined 

attributes (e.g. roll angle, vector, etc.) that match their corresponding mathematical 

elements. For example, the EulerAxisRotation defines properties for rotation vector 

and angle, while the TaitBryanRotation has a degree–like property for each 

dimension. Both coordinate systems and transformation systems ontologies have 

been designed bottom–up [30], the superclasses being constructed as the union of 

their subclasses (see Fig. 2). By this approach, we force the notion of abstract 

classes (we cannot have instances of CoordinateSystem, it has to be an instance of 

CartesianSystem or SphericSystem) without losing the type-of relation and the 

inheritance mechanism between concepts. Furthermore, the cardinality constraints 

defined on the properties (such as radial, coordinates, etc.) makes those properties 

mandatory. 

 

Fig. 2. Excerpt from the Coordinate Systems and Transformation Systems Ontologies 

3. The Geometrical Shapes Ontology. Inspired by [31], the shapes ontology is the 

most complex one and it formalizes the fundamental geometrical shapes such as 

cuboids, sphere, etc. Its dependency with the previously described ontologies gives 

it more flexibility in the positioning and transformation of the spatial shapes. The 

central concept of this ontology is the SpatialObjet, all basic shapes as well as any 

user–defined spatial object being subclasses or instances of the SpatialObjet 

concept. In the spatial ontology, each shape is described mainly by a 

transformation (e.g. rotatedBy), a position (hasPosition) and by its dimensions 

(hasDimensions), or it can be identified by one or more points of reference 

(definedBy). As can be seen in Fig. 3, the spatial relationships between objects are 

expressed as a hierarchy of properties (RelativePositioning), but it’s also possible 

to be defined as a distinct ontology.  

For all of the upper ontologies, the system considers that two parameters are 

implicit: the distance unit expressed in meters and the degree unit in radians. 
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The topological and compositional properties defined on SpatialObjet’s let the user 

to construct iteratively more complex SpatialObjet’s. When he starts working with 

the initial system, the user can essentially use Basic3dShape and its associated basic 

operations to define his queries that correspond to its basic objects. By composing 

these simple Basic3dShape objects, the user can describe new, more complicated 

shapes. These new spatial objects have to be defined in the User Ontology. We will 

illustrate now an example of how a user might proceed to define its own objects and 

make them available as an ontological definition.  

 

Fig. 3. Excerpt form from the ―Geometrical Shapes‖ Ontology. 

4.2 The User Ontology 

To illustrate the user’s point of view, let’s imagine for this example that he would like 

to find Corinthian columns in the Pantheon data. By looking at the image of the 

entrance (see Fig. 4), one user may try to retrieve the points defining a column using 

the basic definition of a box, another user may prefer to retrieve the same points using 

a cylinder, whereas a third user may realize that a combination of the two previous 

approaches might be more appropriate. This mainly depends on the specific point of 

view. An architect using the data might have a completely different approach than a 

historian. 
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Fig. 4. The entrance of the Pantheon in Rome and abstract representation of a Corinthian 

Column 

These new spatial objects have to be defined in the ontology, more precisely in the 

part reserved for user definitions. To do this he can use the Ontology Web Language 

(OWL) or the tools provided by the system. A user can define new 3D objects or 

redefine existing objects (e.g. by changing the coordinate system). 

 

Fig. 5. Extended User Ontology for CorinthianColumn 

We will present now an example of how a user might proceed to define its own 

objects and make them available as an ontological definition. Let’s say he would use a 

box for the base element, then a cylinder for the middle part of the column, and 

another box for the top of the column, all of them being combined to define a 

Corinthian column. For these types of complex shapes, a new concept can be added to 

the user ontology, named CorinthianColumn (see Fig. 5). Furthermore, another 

concept CorinthianEntrance can be defined as composed of CorinthianColumn’s. The 

Basic3dShape’s used to define the new concepts have precise coordinates and 

ontological descriptions 

Based on the extended ontology another user could add his own concepts and make 

them dependent on the newly introduced concepts of the CorinthianColumn. As 

known from the history of architecture, Corinthian columns might consist of identical 

base and middle element, but they could differ in their top element. The ontological 

definitions should also allow this refinement of the basic definitions of a 

CorinthianColumn.  

Once the user ontology is completely populated, the Retrieval phase may be 

applied in order to obtain the optimal scene interpretation. The system’s 

functionalities for this phase are still in the implementation phase, but we may 

illustrate what it could be considered as an optimal description: for the scene 

representing the entrance, this could be the following set:  
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{ RULES: 

 R1: IF instance1 of CorinthianColumn THEN instance2 of CorinthianColumn

  relativeToLeft atDistance d 

  DATA: 

  instanceA # instance of the last column at right, satisfying the rule R1 

  instanceB # instance of the first column at left, exception for rule R1 

} 

The retrieval algorithm designed to search a specific object in a spatial scene receives 

as input an instance of a concept from the user ontology (usually a composition of 

basic shapes, defined by some properties and related by some spatial relations). The 

main goal is to navigate from a conceptual scene representation to a deterministic 

scene composed by points. Because the cloud points contain often a huge number of 

points, the complexity of operations executed by shape extraction algorithms (sub-

routines of retrieval algorithm) represents a very important issue. From this 

viewpoint, the ontology layer is facilitating the search because it allows focusing only 

on some kind of primitives.   

The Reference ontology mainly specifies pure mathematical definitions of the 

shapes as well as their spatial relations. In certain cases, the interpretation of the scene 

cannot be done without adding a human (i.e. uncertain and vague) perspective of the 

scene (as example, for searching a small sphere nearby a big box, where the terms 

{small, nearby, big} might have a specific meaning only for the scene under 

consideration).  Therefore, the user must have the possibility to extend the reference 

ontology with a set of relations or properties inspired from linguistic variables defined 

by the fuzzy logic theory. This linguistic variables are treated as relations and can be 

integrated in exactly the same was as all other spatial relations. 

The details of the implementation of the retrieval algorithm based on this extended 

ontology are beyond the scope of this paper and are presented in [22], [23]. 

5 Conclusions 

Following a novel direction in computer vision during the last years - the use of 

techniques from Artificial Intelligence and Knowledge Management for scene 

understanding – we started the development of a complex project designed to 

generate an optimal scene interpretation starting from 3D unstructured point clouds. 

The novelty of our approach is given, in our opinion, by the definition of the concept 

optimal interpretation, seen as the shortest description (according to the MDL 

principle) of a scene, expressed in a spatial language encoded as a dynamically 

created semantic layer, implying 3D object instances and spatial relationships. For 

architectural data (the Pantheon Project) we designed this layer as a semantic 

framework for adding and sharing conceptual knowledge about spatial objects, by 

starting from a reference ontology that describes the basics of the spatial aspects. The 

description also includes extension mechanisms allowing adapting the basic reference 

systems to specific user needs. Finally we were able to outline the basic structure that 
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would allow querying in a simple way point clouds especially well adapted for 

presenting the data as well as the query results on the WWW.  
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