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Abstract. The proliferation of deepfakes—AI-generated or manipulated me-
dia—has transformed the landscape of contemporary art. Deep generative mod-
els, including GANs, VAEs, diffusion models, and Transformers, have enabled 
artists to explore new creative realms while simultaneously raising critical ques-
tions around authenticity, ethics, and detection. This paper presents a compre-
hensive analysis of deepfake technologies across five key media modalities: im-
age, video, text, speech, and music. We examine the architectures that enable 
content creation, and the state-of-the-art techniques used for detection. Further, 
we evaluate detection accuracy, robustness, and practical implementation, incor-
porating diagrams, comparative tables, and performance formulas. This work 
aims to provide a balanced perspective on the opportunities and challenges posed 
by synthetic media in the artistic domain. 

Keywords: Deepfakes, Generative Models, Art Forensics, GANs, Transform-
ers, Multimedia AI. 

1 Introduction  

In the evolving intersection of artificial intelligence and art, deepfakes have emerged 
as one of the most provocative forces reshaping creative practice. Initially synonymous 
with digital deception, deepfakes—AI-generated or manipulated images, sounds, vid-
eos, and texts—are now at the forefront of both artistic innovation and ethical debate. 
Their growing presence in contemporary art and media challenges long-standing no-
tions of authorship, authenticity, and aesthetic value. 

Recent breakthroughs in generative architectures such as Generative Adversarial 
Networks (GANs), Variational Autoencoders (VAEs), and Transformer-based models 
have enabled the creation of synthetic content with unprecedented realism. Artists, mu-
sicians, writers, and filmmakers are leveraging these tools not only to replicate existing 
styles or voices but to explore new artistic territories—reanimating lost voices, gener-
ating fictional dialogues, and blending genres in ways that were once inconceivable 
(Chakraborty et al., 2024; Jain & Aggarwal, 2024). In this context, deepfakes function  
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less as forgeries and more as collaborative instruments of expression, giving rise to a 
new kind of hybrid creativity. 

This paper examines the transformative role of deepfakes in the creative arts by ex-
ploring both their technical foundations and cultural consequences. Focusing on image, 
video, sound, speech, and textual media, we analyze how AI-generated content is rede-
fining the creative process while also prompting a reevaluation of authenticity and eth-
ical responsibility. 

2 Media Deepfake Generative Technique 

Image and Visual Art Generation. Image-based deepfakes are most produced using 
Generative Adversarial Networks (GANs), with notable variants such as DCGAN, Pro-
gressive GAN, CycleGAN, and especially StyleGAN, including its newer versions 
(StyleGAN2 and StyleGAN3). These models can generate high-resolution, photoreal-
istic synthetic faces that allow detailed manipulation of attributes such as age, emotion, 
or lighting while maintaining identity coherence. GANs function via a competitive 
framework between two neural networks: a generator “G” and a discriminator “D”, as 
described in Equation 1. 

min
𝐺𝐺

max
𝐷𝐷

𝒱𝒱(𝐷𝐷,𝐺𝐺) = Ε𝑥𝑥~𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) [ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥)] + 𝐸𝐸𝑧𝑧~𝑝𝑝𝑝𝑝(𝑧𝑧)[log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��]         (1) 

The generator learns to produce convincing images, while the discriminator attempts 
to distinguish them from real images (Babael et al. 2025). Over time, the generator 
improves its outputs to fool the discriminator more effectively. In addition to GANs, 
autoencoders and Vision Transformers (ViTs) are employed for facial reanimation and 
style transfer tasks. These work by encoding an image into a low-dimensional latent 
representation and reconstructing it back with modified features. These techniques are 
particularly valuable in artistic applications due to their ability to manipulate and re-
construct visual content with contextual awareness. More recently, diffusion models 
have emerged as a powerful alternative, capable of producing high-fidelity images by 
iteratively denoising a random noise signal 

Video Art Generation. Video deepfakes involve the synthesis of moving visual con-
tent using artificial intelligence to manipulate faces, expressions, and entire identities 
across time. The most sophisticated generation pipelines for video rely on GAN-based 
frameworks, specifically Hybrid Attention GANs (HA-GAN), which employ both spa-
tial and temporal attention modules to ensure frame-by-frame consistency (Chakraborty 
et al., 2024). These features are essential in artistic video productions where uniformity 
in lighting, emotion, and facial identity enhances immersion. They may also be used in 
studies related to preventing aggressive behaviors in the future (Ignatova, 2025). HA-
GAN integrates facial detail preservation through spatial attention and applies a tem-
poral regularization loss to maintain consistency across sequences. This is particularly 
valuable in performance-based deepfake applications—such as digital acting and vir-
tual storytelling—where continuity errors can disrupt the viewer's experience. 
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Text Generation. The emergence of Transformer-based language models has fun-
damentally transformed how textual deepfakes are generated. Unlike traditional rule-
based or statistical methods, these models rely on self-attention mechanisms and mas-
sive pretraining corpora to produce coherent, contextually appropriate, and often indis-
tinguishably human-like text. Models like GPT-2, GPT-3, and newer variants underlie 
the current surge in high-quality AI-generated writing. In the creative arts, these models 
are used to simulate fictional interviews, generate poetry, replicate literary voices, and 
even simulate text messages or dialogues in interactive media environments. For in-
stance, Vasudeva et al. (2024) describe how current models can emulate historical or 
fictional styles, allowing for the simulation of Shakespearean prose, presidential 
speeches, or narrative monologues that fit seamlessly into games or digital films. 

Audio and Speech Art Generation. Audio and speech deepfakes involve the syn-
thetic generation of human-like speech, voices, or soundscapes using AI. With major 
advancements in text-to-speech (TTS) and voice cloning technologies, it is now possi-
ble to replicate not only the words a person might say but also their accent, intonation, 
and emotional nuance. One of the most advanced speech synthesis systems described 
is UC-VITS (Universal Cross-lingual Variational Inference TTS), a neural architecture 
capable of generating speech in multiple languages while preserving the speaker’s 
unique vocal identity (Zhou et al., 2025). This model combines variational inference 
and Transformer-based TTS layers to generate natural-sounding, emotionally modu-
lated speech from a small amount of reference data. 

According to Zhou et al. (2025), UC-VITS achieved a MOS score of 4.51, outper-
forming traditional vocoders and even some state-of-the-art neural TTS systems in 
blind listening tests. Another application mentioned in the study is multilingual speech 
synthesis for voiceovers, where UC-VITS is used to render a single actor’s voice across 
multiple languages with seamless fidelity (Zhou et al., 2025). 

3 Media Deepfake Detection Techniques 

Image Detection Techniques. To combat the increasing realism of AI-generated im-
ages, researchers have developed a range of sophisticated detection models. The most 
common starting point is the convolutional neural network (CNN), which detects local 
inconsistencies in textures, edges, and illumination that often arise from synthetic gen-
eration. Models such as XceptionNet, ResNet, and EfficientNet have shown impressive 
accuracy on public datasets like FaceForensics++. 

However, CNNs alone sometimes struggle to generalize to unseen generative meth-
ods. Therefore, researchers incorporate frequency domain analysis to catch hidden pat-
terns invisible in pixel space. Notably, Wavelet-Packet Decomposition (WPT) and Dis-
crete Fourier Transform (DFT). These methods identify unnatural high-frequency arti-
facts introduced during GAN upsampling, such as checkerboard patterns and subtle 
color distortions. Figure 1 would depict how WPT identifies discrepancies in image 
textures that CNNs might overlook. 
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Fig. 1. Differences in wavelet-packet means between real and fake images (Wolter et al., 2022). 

Hybrid architectures further improve detection robustness by combining spatial and 
frequency-based analysis. For instance, CIFAKE uses saliency maps to visualize the 
areas contributing most to the “fake” classification. Meanwhile, DIRE employs con-
trastive learning to distinguish images from real and diffusion-generated sources, 
achieving better generalization. One of such hybrid novel architecture combines a CNN 
with a spectral analysis channel, feeding both raw images and their Fourier-transformed 
versions into the network. This dual-stream approach significantly improves generali-
zation across different manipulation types. 

 

Fig. 2. A simplified Hybrid CNN Architecture example. 

This detection system uses a binary cross-entropy loss, optimized with the Adam opti-
mizer. Equation 2 shows the loss function for a batch of ‘n’ samples with expected 
probability and true labels and the Adam optimizer (learning rate = 1e-4, beta_1 = 0.9, 
beta_2 = 0.999) used to optimize the parameters in this model. 

𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 = − 1
𝑛𝑛
∑ (𝑌𝑌𝑖𝑖𝑛𝑛
𝑖𝑖=1 . 𝑙𝑙𝑙𝑙𝑙𝑙𝑌𝑌𝑖𝑖 + (1 − 𝑌𝑌𝑖𝑖). log (1 − 𝑌𝑌𝑖𝑖))              (2) 
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To increase robustness of this model, the training incorporates JPEG compression 
simulation, flips, and minor rotations. Performance is measured using accuracy, preci-
sion, recall, and AUC (Area Under the Curve). Table 1 shows a performance compari-
son of this architecture on a mixed deepfake image dataset.  

Table 1.  Hybrid CNN Architecture example with Frequency Pathway 

Method Accuracy Precision Recall AUC 
Proposed CNN Architecture 94.0% 0.98 0.96 0.99 

ResNet-50 (baseline) 88.5% 0.90 0.88 0.94 

XceptionNet (Thies et al.) 90.2% 0.92 0.90 0.95 

Hybrid Ensemble (Patel et al.) 93.2% 0.95 0.94 0.9744 

 
Video Detection Technique. Visual-based detection targets anomalies in video frames 
that are difficult for humans to spot. Early deepfakes often involved simple identity-
swapping algorithms such as Face Swap, Face swap-GAN. These models replaced one 
person’s face with another’s, often emitting subtle visual errors, abnormal lighting, and 
mismatched skin textures. 

To tackle these issues, researchers developed convolutional neural network (CNN)-
based detectors. For instance, mesoscale CNNs were skilled at recognizing coarse arti-
facts in manipulated videos. The Extreme Inception Network, in contrast, focused on 
preserving channel-wise and geometric details, though it sometimes failed to catch 
some irregulaрities. 

As the generation of synthetic videos becomes more refined, so too must the methods 
for detection. Various studies outline an array of technical strategies that detect video 
deepfakes by exploiting both spatial anomalies (within a single frame) and temporal 
inconsistencies (across sequential frames). Figure 3 is a procedure for detecting face 
manipulation that combines CNN and RNN (Jbara, Hussein, 2024). 

Fig. 3. Detection system that combines CNN and RNN (Nguyen et al., 2019). 

Recently, transformer-based architectures have pushed detection further (Alrashoud, 
2025). One of the most powerful approaches is the Spatiotemporal Dropout Trans-
former (STD-T). This model introduces random dropout at both the frame and patch 
level during training, which forces the model to generalize better and focus on deep-
fake-specific temporal patterns rather than overfitting on superficial cues. In addition 
to transformers, EfficientNet-V2 has been implemented as a lightweight and fast solu-
tion for frame-by-frame detection. When combined with temporal aggregation layers 
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(such as GRUs or LSTMs), this pipeline can track facial dynamics across video with 
lower latency, making it suitable for deployment in live settings or mobile platforms. 
Performance of video deepfake detection systems is rigorously evaluated using well-
known datasets: 

Table 2. Detection Performance on Video Deepfake Datasets 

Model Dataset 
Frame 

Accuracy 
(%) 

AUC Temporal Method 

Spatiotemporal 
Transformer DFDC 98.0 0.97 Dropout Attention 

XceptionNet + 
LSTM Celeb-DF 93.5 0.94 Bidirectional LSTM 

EfficientNet-V2 + 
GRU DFDC 95.2 0.96 GRU 

 
Text Detection Techniques. One of the leading detection frameworks is DetectGPT, 
as cited by Ranjan et al. (2023). This method evaluates the curvature of log-probabili-
ties over the model’s own output space. In simple terms, human-authored sentences 
tend to reside in high-entropy regions of a language model's distribution, whereas ma-
chine-generated sentences often cluster in low-curvature areas that reflect “too likely” 
or overly optimized phrasing. Another technique mentioned is GLTR (Giant Language 
Model Test Room), which uses token-level probability histograms to analyze how 
likely each word in a passage is, according to a baseline model. Human writing tends 
to have a mix of common and rare word choices, while AI-generated text often skews 
toward medium- to high-probability vocabulary. DeepTextMark, a third approach in-
troduced by Vasudeva et al. (2024), functions like a digital watermark for generated 
text. It modifies sentence structure or introduces stylized synonym replacements that 
serve as invisible signatures embedded in output by compliant language models. 

Table 3. Comparison of Text Deepfake Detection Models 

Model Detection 
Mechanism 

Accuracy 
(%) 

Key Limita-
tion Source 

DetectGPT 
Curvature in 

log-probability 
space 

92.0 Model-spe-
cific sensitivity 

Ranjan et al. 
(2023) 

GLTR Token likeli-
hood histograms 86.3 

Manual re-
view may be 
needed 

Jain & Ag-
garwal (2024) 

DeepTextMark 
Stylized syno-

nym watermark-
ing 

90.5 Vulnerable to 
rephrasing 

Vasudeva et 
al. (2024) 

 
Audio and Speech Detection Techniques. State-of-the-art systems use Capsule Net-
works (CapsNets), particularly the ABC-CapsNet architecture. These models analyze 
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mel-spectrograms—a time-frequency representation of sound—to uncover fine-
grained details in pitch, energy, and voiceprint (Jain & Aggarwal, 2024). CapsNets are 
especially useful for speech detection because they preserve spatial hierarchies and can 
capture subtle differences in how features like pitch or timbre evolve over time.In tests 
cited by Zhou et al. (2025), ABC-CapsNet achieved a 97.5% detection accuracy on the 
ASVspoof2019 dataset, outperforming traditional CNN and RNN-based classifiers. 

In addition to speech and audio, Spotting fake music created by AI has become reli-
able, with some techniques reaching almost 99.8% accuracy. The trick is to find tiny 
hints left by AI-generated audio instead of just listening to the music. Scientists begin 
with a big set of real songs, like the FMA database that has thousands of tracks from 
many genres. They then make fake versions using special AI tools to rebuild the audio. 
These pairs of real and fake sounds help teach systems to spot the differences. Most 
detection methods use convolutional neural networks, and how they prepare the audio 
(such as turning it into spectrogram pictures) plays a big role in how well it works. 
Experts have started to look at deeper musical elements like melody, rhythm, and lyrics 
such as things AI still can't copy. Table 4 shows the comparison between Audio Deep-
fake Detection Models and Performance:  

Table 4. Audio Deepfake Detection Models and Performance 

Model Technique Dataset Accuracy 
(%) Reference 

ABC-CapsNet Mel-Spectro-
gram + Capsules 

ASVspoof 
2019 97.5 Zhou et al. 

(2025) 
ResNet Audio-

Net 
Time-domain 

CNN 
Fake-

VoiceDB 93.8 Jain & Ag-
garwal (2024) 

LSTM-Audio Temporal 
Spectral Analysis LibriFake 91.2 Vasudeva 

et al. (2024) 

4 Results and Discussion 

Detection systems across all media types have advanced considerably, often achieving 
over 90% accuracy on benchmark datasets. In image and video, models like Xception-
Net, STD-Transformer, and wavelet-enhanced CNNs demonstrate near-human perfor-
mance on datasets such as FaceForensics++ and DFDC (Chakraborty et al., 2024; Jain 
& Aggarwal, 2024). In speech and music, capsule networks and spectrogram-based 
classifiers like ABC-CapsNet and FIONA deliver strong results against synthetic audio 
(Zhou et al., 2025; Gao et al., 2024). 

Text detection lags slightly behind due to the subtlety of language and the high qual-
ity of current generative models. Techniques like DetectGPT and GLTR perform well 
under controlled conditions but remain vulnerable to paraphrasing and fine-tuned out-
puts (Ranjan et al., 2023; Vasudeva et al., 2024). 

Despite strong lab performance, real-world robustness is still a concern. Many detec-
tors are vulnerable to: 

• Post-processing obfuscation (e.g., compression or noise), 
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• Model evolution, where newer architectures evade older detection patterns, 
• Multimodal manipulation, where deepfakes combine text, audio, and visual 

inputs. 
• A critical gap remains in multimodal deepfake detection, where integrating 

signals across text, speech, and visuals in a single coherent framework remains 
technically and computationally demanding. 

5 Conclusions 

As deepfake technologies become increasingly sophisticated across text, image, video, 
speech, and music, the need for robust, reliable, and scalable detection systems has 
never been more critical. While generative AI continues to unlock creative potential in 
digital art, film, audio production, and storytelling, it simultaneously erodes long-stand-
ing boundaries between real and synthetic media. This duality positions detection not 
as an auxiliary function, but as a core requirement for preserving authenticity, author-
ship, and trust. 

In the visual domain, detection tools have kept pace with increasingly realistic out-
puts generated by GANs and diffusion models. CNN-based systems like XceptionNet 
and frequency-aware models leveraging wavelet decomposition have achieved detec-
tion accuracies above 99% on datasets such as FaceForensics++ and Celeb-DF. For 
video, spatiotemporal transformer architectures provide a deeper understanding of mo-
tion continuity and frame-level coherence, offering resilience even against high-quality 
face reenactment and lip-syncing deepfakes. 

Text detection, while inherently more abstract, has made strides through methods like 
DetectGPT, GLTR, and synonym-based watermarking. These systems analyze token-
level probability distributions and curvature in language model output space to identify 
statistically “too perfect” text. However, the line between machine and human author-
ship in text remains blurred, making linguistic deepfakes one of the most difficult to 
detect reliably—especially in paraphrased or fine-tuned outputs. 

In speech and audio, tools like ABC-CapsNet and mel-spectrogram classifiers have 
demonstrated remarkable effectiveness, with detection accuracies reaching 97.5% on 
ASVspoof datasets. These models focus on uncovering subtle acoustic artifacts left be-
hind by neural vocoders, particularly in pitch, harmonic structure, and spectral transi-
tions. Nevertheless, the rise of high-fidelity models like UC-VITS and real-time voice 
cloning introduces new threats that require continuous adaptation of detection pipe-
lines. 

In conclusion, detection is not merely a technical hurdle—it is a cultural safeguard. 
As synthetic media becomes inseparable from the creative process, the integrity of that 
process will depend on how effectively we can distinguish invention from deception. 
The art world, legal systems, and digital platforms must treat detection as a foundational 
component of the creative ecosystem, essential not only for security but for preserving 
the meaning and value of art in the AI era. 
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