
Digital Presentation and Preservation of Cultural and Scientific Heritage, Vol. 15, 2025.
Sofia, Bulgaria: Institute of Mathematics and Informatics – BAS. ISSN: 1314-4006, eISSN: 2535-0366

Tools for Historical Handwritten Document Analysis

Ioannis Pratikakis[0000-0002-4124-3688]

Democritus University of Thrace, Department of Electrical and Computer Engineering,
Kimmeria Campus, 67100 Xanthi, Greece

ipratika@ee.duth.gr

Abstract. Accessing historical documents requires an effective toolbox that com-
prises several technologies within the area of document image analysis. In this
paper, we focus on Handwritten Text recognition (HTR) and Keyword spotting
(KS) for which we present representative approaches that aim for effectiveness
and efficiency.

Keywords: Handwritten Text Recognition, Keyword Spotting, Historical
Handwritten Documents.

1 Introduction

The potential to access our written past, which stimulates the interest of not only re-
searchers but also the general public, makes relevant technologies from document im-
age analysis research area highly appealing. In this paper, the focus is on tools for ef-
fective historical handwritten document analysis, namely Handwritten Text recognition
(HTR) and Keyword spotting (KS).

Several challenges are present for those tools targeting the relevant historical period,
caused by the age of the historical manuscripts that affects the clarity of the writing and
the image quality in general. The language used in the writing results in increased com-
plexity due to the multitude of diacritics, punctuation and abbreviating symbols that
were used, leading to an increased character set compared to modern languages. The
complexity is further increased by the fact that the content of such documents is uncon-
strained and might have been created by multiple writers.

The structure of this paper is built upon the description of distinct methodologies
that relate to distinct tools for HTR and KS that are situated in a toolbox dedicated to
Handwritten Document Analysis. Example toolbox is shown in Figure 1.

2 Handwritten Text Recognition

The overall proposed architecture consists of an image preprocessing module that feeds
an OctCNN-BGRU. The proposed architecture, as shown in Figure 2, consists of a

mailto:ipratika@ee.duth.gr

18

CNN stage for feature extraction and a recurrent stage for feature decoding into a prob-
ability vector corresponding to the different character classes. Each text line of the doc-
ument is presegmented and processed separately, in a bidirectional manner. Each of the
stages is presented in detail in the following sections. For a comprehensive presentation
the interested readers can consult the work in (Tsochatzidis et al., 2021).

Fig. 1. The offline and online component of a toolbox dedicated to

Handwritten Document Analysis

2.1 Preprocessing

The preprocessing of the input images utilized in the proposed pipeline aims to stand-
ardize images from different sources and writers. Towards this end, Illumination Com-
pensation was used to remove shadows and balance brightness/contrast along a text line
image. As a next step, deslanting is applied, to soften the cursive style that may occur
during handwriting, affecting the slope of the line and the slant of the letters.

19

2.2 Octave-CNN architecture

The octave-convolution operation (OctConv), introduced in (Chen et al., 2019), is a
drop-in replacement for the convolution operation in a CNN architecture, which in-
volves processing the input in two different scales, aiming to capture both high- and
low-frequency patterns. Towards this end, the input feature map X is factorized into
two portions along the channel axis, resulting in two feature maps that capture fine- and
low-detailed information.

The proposed Octave-CNN architecture, as shown in Figure 2, is aimed at the ex-
traction of features from the input image in a feed-forward manner. It consists of five
convolutional blocks, each one containing an OctConv layer with kernel size 3 × 3
pixels, stride equal to 1 and batch normalization. The leaky rectified linear
(LeakyReLU) function is used for neuron activation, which provides a small gradient
value when the unit is not active. A maximum pooling layer with kernel size equal to 2
× 2 is used after the first three blocks, to reduce the spatial dimensions of the features.
Additionally, a dropout layer, with probability equal to 0.2 (experimentally defined) is
included in the last three blocks, to assist for better generalization ability and robustness
of the features. Finally, the average of each column of the feature maps of the last layer
is calculated, to acquire a feature vector with 80 features for each time step along the
width of the image, as shown in Figure 3.

(a) (b)

Fig. 2. Schematic diagram of the proposed HTR architecture, consisting of (a) the CNN stage,
and (b) the recurrent stage.

3 Keyword Spotting

Figure 4 shows the proposed methodology. First, the DoLF local features are calculated
and detected on a preprocessing document image. Afterwards, an indexing procedure
uses the calculated DoLF and creates a set of data structures which allow efficient and
effective word spotting. Next, the user selects the query word image on which the DoLF
local features are calculated. Finally, a novel matching procedure called Quantitative
Near Neighborhood Search (QNNS) detects on documents visually similar regions to

20

this query word image and presents them to the user. For a comprehensive presentation
the interested readers can consult the work in (Zagoris et al., 2021).

Fig. 3. Feature maps produced by each layer of the Octave-CNN model.

3.1 Preprocessing and Local Points Calculation

The initial step contains a pre-processing step that aims to enhance the contrast between
the foreground and background pixels of the document image and keep the valuable
edge boundary information. This enhances the effectiveness of the subsequent calcula-
tion of the gradient-based keypoints and descriptors. The required pre-processing step
comprises two steps. The first step consists of a contrast normalization method which
deals with the illumination changes. Subsequently, the gradient vectors Ix and Iy of the
document image I are calculated and filtered by a high pass filter for eliminating any
remaining background noise. The filter thresholds are calculated dynamically based on
the Otsu algorithm for minimizing the intra-class variance between the foreground and
background pixel clusters. The two filtered gradient images, as shown in Figure 5(b)
and Figure 5(c), are then encoded in a JavaScript Object Notation (JSON) format and
passed to the server application for the keypoint extraction.

21

Fig. 4. An efficient keyword spotting architecture

For the keypoint and feature extraction, we adapted a version of the Document-ori-
ented Local Features (DoLF) proposed in (Zagoris et. al., 2017). While most works
that are using local features are based on the Scale Invariant Feature Transform (SIFT)
(Lowe, 2004) initially motivated as being used for natural images, in comparison with
the document images, have many structural differences that create problems such as (i)
the erroneous local points detection between the document lines due to the image pyra-
mid scaling (ii) the invariant properties of those descriptors which amplify noise.

On the contrary, the DoLF exhibits some desirable characteristics which makes
them suitable for the proposed method, such as (i) they take into consideration the hand-
written document particularities; (ii) they provide consistency between different hand-
written writing variations; (iii) their descriptors contain texture information in a spatial
context which is suitable in dealing with a document collection created by different
writers, containing significant writing style variations.

22

Fig. 5. The proposed word spotting indexing and matching pipeline for the Greek handwritten

word of ’Aristotle’. (a) Query image; (b) Filtered gradient image Ix; (c) Filtered gradient image
Iy; (d) Quantization of the gradient orientation; (e) Keypoints; (f) Query keypoint (yellow) and

the included keypoints (blue) to be matched during the matching process.

The DoLF computation comprises two parts, the keypoint detection and the feature
calculation around it. Subsequently, a brief description of the keypoints and their de-
scriptors is provided.

The next step involves the linear quantization of the gradient orientation. This step
aims to label the changes to writing direction as these points consist of important and
descriptive information. Figure 5(d) shows the output for the quantization of the gradi-
ent orientation values. Each colour represents a different quantization level. The current
work uses four different quantization levels. Next, for each quantization level, the Con-
nected Components (CC) are detected.

These CCs represent chunks of strokes that correspond to different writing direc-
tions. The final local points are the centre of gravity of each remaining CC. An example
of these keypoints is shown in Figure 5(e). The keypoint calculation method can detect
meaningful points of the characters that reside in the documents independently of its
scale. Moreover, it provides some consistency between different handwritten writing
variations.

The next step involves the calculation of the features around the detected keypoints.
The descriptor is calculated upon a scale-invariance window size around the detected
local points. The window size is defined dynamically by calculating the mean bright-
ness in different window sizes and selecting the one that has the maximum value.
Then, the selected window size is divided into 16 cells where a 4-bin histogram is
calculated, representing each cell (each bin corresponds to a quantization level). Each
pixel inside a cell accumulates a vote in the corresponding angle histogram bin. The
strength of voting depends on the pixel’s magnitude of the gradient vector.

23

All histograms are concatenated in a single 64-bin histogram and normalized by its
norm. Finally, all values above 0.2 are set to 0.2 and are re-normalized again to mini-
mize the illumination effect in the descriptor. The final descriptor is shown in Figure
6(c).

Fig. 6. Feature extraction: (a) Window size detection; (b) Features calculation;

(c) Descriptor structure.

3.2 Features Indexing

The sheer magnitude of the detected local points and their descriptors are increasing
the costs in terms of time, memory and storage requirements rendering them unusable
to provide a service. To solve this issue, we transform the information from the DoLFs
to several different structures that permit efficient word spotting without compromising
on the effectiveness.

The proposed indexing method comprises two distinct steps:
A. Descriptor quantization using multiple Bag of Visual Words (BoVW) to decom-

pose and compress its information
B. Three different memory and storage structures for very quickly segmentation-free

word spotting during the client request.

24

Fig. 7. Memory and storage structures along with their relationships.

At this point, the descriptor is split to four different parts. This is because each part
describes a different spatial part of the descriptors. Next, four different codebooks are
created for the different parts of the descriptor. The size of each codebook corresponds
to the descriptor precision but with increasing processing and storage costs. For our
experiments, a codebook of size 16 is used. The final quantized descriptor is a 4-bin
histogram with each bin in the range of 0-15 values. Then, three data structures are
created to facilitate the low retrieval times, incorporating the information from the local
points location and the corresponding quantized descriptor. The Memory Invert File
Structure, the Descriptors Storage Structure and the Spatial Hash Structure as shown at
Figure 7.

The Keypoints Storage Structure (KSS) is the simplest and most prominent data
structure. It contains all the calculated keypoints and their descriptors. It is a struct array
in which the array index corresponds to the keypoints Id. Each struct (72 bytes) holds
the keypoint location (X, Y), the document which resides (DocID) and its quantized
descriptor.

The Memory Invert File Structure (MIFS) resides in memory. It is an array of 64-bit
integer lists (8 bytes). Each descriptor corresponds to a hash id l which is calculated
from the following hash function:

l = BOW1 ∗ K3 + BOW2 ∗ K2 + BOW3 ∗ K + BOW4 (1)

where BOWi corresponds to the each quantitized value of descriptors (Figure 7(a)) and
K equals to the codebook size. In our proposed method K = 16.

The MIFS is a dictionary-based structure that maps a list of keypoints K with the
same hash value l. Thus, the MIFS primary function is to retrieve a list of descriptors
D, which have the same hash value l.

The Spatial Hash Structure (SHS) assists the detection of every keypoint that is re-
siding in a specific location inside a document as it provides information about the
spatial distribution of the local points inside a document. Its primary function is to re-
trieve a list of descriptors D that their local points location is closed to each other inside
the document.

This is achieved by using the following hash function:
 h(x, y, n) = n ∗ A2 + y ∗ A + x (2)

25

where A is any custom-defined number that is greater than the maximum width and
height document inside a collection.

The above hash function takes as input the location of the keypoint (x, y) and the
document n resulting in the hashID computation of the corresponding local point.

The retrieval of all the DoLFs in proximity to the point (x1, y1) is achieved by: First,
calculating the hashIds for all the local points residing inside the space (x ± dx, y ± dy)
for the document n. The dx and dy denote the distance space from the local point (x1,
y1). Next, all the descriptor Ids are retrieved from the SHS that corresponds to that
specific hashIds. Finally, through the KSS, all the descriptor information is available.

These three storage structs is the minimum required information to be stored from a
documents collection. Only the MIFS needs to reside in memory; the other two can be
stored in disks and accessed when needed.

3.3 Feature Matching

Feature Matching is the only procedure that affects the user as it commences during the
word spotting search. Initially, the query image is analyzed, and the DoLF is calculated.
From them, the quantized descriptors and the corresponding hash values l are calculated
based on the previous trained BoVW. Finally, the hash values l are calculated based on
the Eq. 1 for each DoLF.

Through the MIFS, all the descriptor ids with the same hash value l with the query l
value are retrieved. Finally, their locations and descriptors are retrieved through KSS.
The feature matching goal is to identify those keypoints with similar spatial distri- bu-
tion and descriptors with the query keypoints. First, the nearest keypoint Qkc from
(cx,cy) point is identified. The (cx,cy) is denoted as the mean center of the keypoints set
in the query word image. The next step involves identifying the most similar local
points with the Qkc from the retrieved descriptors n.

In our implementation, the Euclidean Distance (ED) is used, and the top N matches
that are kept denote those that have the distance from the query keypoint Qkc feature
equal to those that have the distance from the query keypoint Qkc feature lower than a
threshold t. This threshold is experimentally defined and controls the time expense of
the search in the document space. Each keypoint that belongs to the top N matches is a
document candidate coordinate origin similar to the query image.

The spatial NNS for each keypoint that resides on the query image is addressed in
the next stage. The spatial NNS is realized in a search area around each point. During
the search, if there are one or more keypoints in the proximity of the query keypoint
under consideration, the Euclidean distance between their descriptors is calculated and
the minimum distance is kept. The previous procedure is repeated for each keypoint in
the query image. The final similarity measure is the average of all the minimum dis-
tances. In the case that a local point in its proximity does not exist, then the query local
point is ignored.

26

4 Conclusion

This paper presents a toolbox that comprises effective approaches for Handwritten Text
recognition (HTR) and Keyword spotting (KS) that result in effective historical hand-
written document analysis.

References

Chen, Y., Fan, H., Xu, B., Yan, Z., Kalantidis, Y., Rohrbach, M., Yan, S., & Feng, J.
(2019). Drop an octave: Reducing spatial redundancy in convolutional neural net-
works with octave convolution. In Proceedings of IEEE/CVF International Confer-
ence on Computer Vision (ICCV), Seoul, Korea (South), October 27–November 2,
2019 (pp. 3434–3443). https://doi.org/10.1109/ICCV.2019.00353

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2), 91–110.
https://doi.org/10.1023/B:VISI.0000029664.99615.94

Tsochatzidis, L., Symeonidis, S., Papazoglou, A., & Pratikakis, I. (2021). HTR for
Greek historical handwritten documents. Journal of Imaging, 7(12), 260.
https://doi.org/10.3390/jimaging7120260

Zagoris, K., Pratikakis, I., & Gatos, B. (2017). Unsupervised word spotting in historical
handwritten documents using document-oriented local features. IEEE Transactions
on Image Processing, 26(8), 4032–4041. https://doi.org/10.1109/TIP.2017.2700721

Zagoris, K., Amanatiadis, A., & Pratikakis, I. (2021). Word spotting as a service: An
unsupervised and segmentation-free framework for handwritten documents. Journal
of Imaging, 7(12), 278. https://www.mdpi.com/2313-433X/7/12/278

Received: April 27, 2025
Reviewed: May 15, 2025
Finally Accepted: June 01, 2025

https://doi.org/10.3390/jimaging7120260
https://www.mdpi.com/2313-433X/7/12/278

	1 Introduction
	2 Handwritten Text Recognition
	2.1 Preprocessing
	2.2 Octave-CNN architecture

	3 Keyword Spotting
	3.1 Preprocessing and Local Points Calculation
	3.2 Features Indexing
	3.3 Feature Matching

	4 Conclusion
	References

