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Abstract. Accessing historical documents requires an effective toolbox that com-
prises several technologies within the area of document image analysis. In this 
paper, we focus on Handwritten Text recognition (HTR) and Keyword spotting 
(KS) for which we present representative approaches that aim for effectiveness 
and efficiency. 
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1 Introduction 

The potential to access our written past, which stimulates the interest of not only re-
searchers but also the general public, makes relevant technologies from document im-
age analysis research area highly appealing. In this paper, the focus is on tools for ef-
fective historical handwritten document analysis, namely Handwritten Text recognition 
(HTR) and Keyword spotting (KS). 

Several challenges are present for those tools targeting the relevant historical period, 
caused by the age of the historical manuscripts that affects the clarity of the writing and 
the image quality in general. The language used in the writing results in increased com-
plexity due to the multitude of diacritics, punctuation and abbreviating symbols that 
were used, leading to an increased character set compared to modern languages. The 
complexity is further increased by the fact that the content of such documents is uncon-
strained and might have been created by multiple writers. 

The structure of this paper is built upon the description of distinct methodologies 
that relate to distinct tools for HTR and KS that are situated in a toolbox dedicated to 
Handwritten Document Analysis. Example toolbox is shown in Figure 1. 

2 Handwritten Text Recognition 

The overall proposed architecture consists of an image preprocessing module that feeds 
an OctCNN-BGRU. The proposed architecture, as shown in Figure 2, consists of a 
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CNN stage for feature extraction and a recurrent stage for feature decoding into a prob-
ability vector corresponding to the different character classes. Each text line of the doc-
ument is presegmented and processed separately, in a bidirectional manner. Each of the 
stages is presented in detail in the following sections. For a comprehensive presentation 
the interested readers can consult the work in (Tsochatzidis et al., 2021). 

 

 
Fig. 1. The offline and online component of a toolbox dedicated to  

Handwritten Document Analysis 

2.1 Preprocessing 

The preprocessing of the input images utilized in the proposed pipeline aims to stand-
ardize images from different sources and writers. Towards this end, Illumination Com-
pensation was used to remove shadows and balance brightness/contrast along a text line 
image. As a next step, deslanting is applied, to soften the cursive style that may occur 
during handwriting, affecting the slope of the line and the slant of the letters. 
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2.2 Octave-CNN architecture 

The octave-convolution operation (OctConv), introduced in (Chen et al., 2019), is a 
drop-in replacement for the convolution operation in a CNN architecture, which in-
volves processing the input in two different scales, aiming to capture both high- and 
low-frequency patterns. Towards this end, the input feature map X is factorized into 
two portions along the channel axis, resulting in two feature maps that capture fine- and 
low-detailed information.  

The proposed Octave-CNN architecture, as shown in Figure 2, is aimed at the ex-
traction of features from the input image in a feed-forward manner. It consists of five 
convolutional blocks, each one containing an OctConv layer with kernel size 3 × 3 
pixels, stride equal to 1 and batch normalization. The leaky rectified linear 
(LeakyReLU) function is used for neuron activation, which provides a small gradient 
value when the unit is not active. A maximum pooling layer with kernel size equal to 2 
× 2 is used after the first three blocks, to reduce the spatial dimensions of the features. 
Additionally, a dropout layer, with probability equal to 0.2 (experimentally defined) is 
included in the last three blocks, to assist for better generalization ability and robustness 
of the features. Finally, the average of each column of the feature maps of the last layer 
is calculated, to acquire a feature vector with 80 features for each time step along the 
width of the image, as shown in Figure 3. 

 
(a) (b) 

Fig. 2. Schematic diagram of the proposed HTR architecture, consisting of (a) the CNN stage, 
and (b) the recurrent stage. 

3 Keyword Spotting 

Figure 4 shows the proposed methodology. First, the DoLF local features are calculated 
and detected on a preprocessing document image. Afterwards, an indexing procedure 
uses the calculated DoLF and creates a set of data structures which allow efficient and 
effective word spotting. Next, the user selects the query word image on which the DoLF 
local features are calculated. Finally, a novel matching procedure called Quantitative 
Near Neighborhood Search (QNNS) detects on documents visually similar regions to 
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this query word image and presents them to the user. For a comprehensive presentation 
the interested readers can consult the work in (Zagoris et al., 2021). 

 
Fig. 3. Feature maps produced by each layer of the Octave-CNN model. 

3.1 Preprocessing and Local Points Calculation 

The initial step contains a pre-processing step that aims to enhance the contrast between 
the foreground and background pixels of the document image and keep the valuable 
edge boundary information. This enhances the effectiveness of the subsequent calcula-
tion of the gradient-based keypoints and descriptors. The required pre-processing step 
comprises two steps. The first step consists of a contrast normalization method which 
deals with the illumination changes. Subsequently, the gradient vectors Ix and Iy of the 
document image I are calculated and filtered by a high pass filter for eliminating any 
remaining background noise. The filter thresholds are calculated dynamically based on 
the Otsu algorithm for minimizing the intra-class variance between the foreground and 
background pixel clusters. The two filtered gradient images, as shown in Figure 5(b) 
and Figure 5(c), are then encoded in a JavaScript Object Notation (JSON) format and 
passed to the server application for the keypoint extraction. 
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Fig. 4. An efficient keyword spotting architecture 

For the keypoint and feature extraction, we adapted a version of the Document-ori-
ented Local Features (DoLF) proposed in (Zagoris et. al., 2017). While most works 
that are using local features are based on the Scale Invariant Feature Transform (SIFT) 
(Lowe, 2004) initially motivated as being used for natural images, in comparison with 
the document images, have many structural differences that create problems such as (i) 
the erroneous local points detection between the document lines due to the image pyra-
mid scaling (ii) the invariant properties of those descriptors which amplify noise.  

On the contrary, the DoLF exhibits some desirable characteristics which makes 
them suitable for the proposed method, such as (i) they take into consideration the hand-
written document particularities; (ii) they provide consistency between different hand-
written writing variations; (iii) their descriptors contain texture information in a spatial 
context which is suitable in dealing with a document collection created by different 
writers, containing significant writing style variations. 
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Fig. 5. The proposed word spotting indexing and matching pipeline for the Greek handwritten 

word of ’Aristotle’. (a) Query image; (b) Filtered gradient image Ix; (c) Filtered gradient image 
Iy; (d) Quantization of the gradient orientation; (e) Keypoints; (f) Query keypoint (yellow) and 

the included keypoints (blue) to be matched during the matching process. 

The DoLF computation comprises two parts, the keypoint detection and the feature 
calculation around it. Subsequently, a brief description of the keypoints and their de- 
scriptors is provided. 

The next step involves the linear quantization of the gradient orientation. This step 
aims to label the changes to writing direction as these points consist of important and 
descriptive information. Figure 5(d) shows the output for the quantization of the gradi-
ent orientation values. Each colour represents a different quantization level. The current 
work uses four different quantization levels. Next, for each quantization level, the Con-
nected Components (CC) are detected. 

These CCs represent chunks of strokes that correspond to different writing direc-
tions. The final local points are the centre of gravity of each remaining CC. An example 
of these keypoints is shown in Figure 5(e). The keypoint calculation method can detect 
meaningful points of the characters that reside in the documents independently of its 
scale. Moreover, it provides some consistency between different handwritten writing 
variations. 

The next step involves the calculation of the features around the detected keypoints. 
The descriptor is calculated upon a scale-invariance window size around the detected 
local points. The window size is defined dynamically by calculating the mean bright-
ness in different window sizes and selecting the one that has the maximum value. 
Then, the selected window size is divided into 16 cells where a 4-bin histogram is 
calculated, representing each cell (each bin corresponds to a quantization level). Each 
pixel inside a cell accumulates a vote in the corresponding angle histogram bin. The 
strength of voting depends on the pixel’s magnitude of the gradient vector. 
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All histograms are concatenated in a single 64-bin histogram and normalized by its 
norm. Finally, all values above 0.2 are set to 0.2 and are re-normalized again to mini-
mize the illumination effect in the descriptor. The final descriptor is shown in Figure 
6(c). 

 
Fig. 6. Feature extraction: (a) Window size detection; (b) Features calculation;  

(c) Descriptor structure. 

3.2 Features Indexing  

The sheer magnitude of the detected local points and their descriptors are increasing 
the costs in terms of time, memory and storage requirements rendering them unusable 
to provide a service. To solve this issue, we transform the information from the DoLFs 
to several different structures that permit efficient word spotting without compromising 
on the effectiveness. 

The proposed indexing method comprises two distinct steps: 
A. Descriptor quantization using multiple Bag of Visual Words (BoVW) to decom-

pose and compress its information 
B. Three different memory and storage structures for very quickly segmentation-free 

word spotting during the client request. 
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Fig. 7. Memory and storage structures along with their relationships. 

At this point, the descriptor is split to four different parts. This is because each part 
describes a different spatial part of the descriptors. Next, four different codebooks are 
created for the different parts of the descriptor. The size of each codebook corresponds 
to the descriptor precision but with increasing processing and storage costs. For our 
experiments, a codebook of size 16 is used. The final quantized descriptor is a 4-bin 
histogram with each bin in the range of 0-15 values. Then, three data structures are 
created to facilitate the low retrieval times, incorporating the information from the local 
points location and the corresponding quantized descriptor. The Memory Invert File 
Structure, the Descriptors Storage Structure and the Spatial Hash Structure as shown at 
Figure 7. 

The Keypoints Storage Structure (KSS) is the simplest and most prominent data 
structure. It contains all the calculated keypoints and their descriptors. It is a struct array 
in which the array index corresponds to the keypoints Id. Each struct (72 bytes) holds 
the keypoint location (X, Y), the document which resides (DocID) and its quantized 
descriptor. 

The Memory Invert File Structure (MIFS) resides in memory. It is an array of 64-bit 
integer lists (8 bytes). Each descriptor corresponds to a hash id l which is calculated 
from the following hash function: 

 
l = BOW1 ∗ K3 + BOW2 ∗ K2 + BOW3 ∗ K + BOW4         (1) 

 
where BOWi corresponds to the each quantitized value of descriptors (Figure 7(a)) and 
K equals to the codebook size. In our proposed method K = 16. 

The MIFS is a dictionary-based structure that maps a list of keypoints K with the 
same hash value l. Thus, the MIFS primary function is to retrieve a list of descriptors 
D, which have the same hash value l. 

The Spatial Hash Structure (SHS) assists the detection of every keypoint that is re-
siding in a specific location inside a document as it provides information about the 
spatial distribution of the local points inside a document. Its primary function is to re-
trieve a list of descriptors D that their local points location is closed to each other inside 
the document. 

This is achieved by using the following hash function: 
                              h(x, y, n) = n ∗ A2 + y ∗ A + x           (2) 
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where A is any custom-defined number that is greater than the maximum width and 
height document inside a collection. 

The above hash function takes as input the location of the keypoint (x, y) and the 
document n resulting in the hashID computation of the corresponding local point. 

The retrieval of all the DoLFs in proximity to the point (x1, y1) is achieved by: First, 
calculating the hashIds for all the local points residing inside the space (x ± dx, y ± dy) 
for the document n. The dx and dy denote the distance space from the local point (x1, 
y1). Next, all the descriptor Ids are retrieved from the SHS that corresponds to that 
specific hashIds. Finally, through the KSS, all the descriptor information is available. 

These three storage structs is the minimum required information to be stored from a 
documents collection. Only the MIFS needs to reside in memory; the other two can be 
stored in disks and accessed when needed. 

3.3 Feature Matching  

Feature Matching is the only procedure that affects the user as it commences during the 
word spotting search. Initially, the query image is analyzed, and the DoLF is calculated. 
From them, the quantized descriptors and the corresponding hash values l are calculated 
based on the previous trained BoVW. Finally, the hash values l are calculated based on 
the Eq. 1 for each DoLF. 

Through the MIFS, all the descriptor ids with the same hash value l with the query l 
value are retrieved. Finally, their locations and descriptors are retrieved through KSS. 
The feature matching goal is to identify those keypoints with similar spatial distri- bu-
tion and descriptors with the query keypoints. First, the nearest keypoint Qkc from 
(cx,cy) point is identified. The (cx,cy) is denoted as the mean center of the keypoints set 
in the query word image. The next step involves identifying the most similar local 
points with the Qkc from the retrieved descriptors n. 

In our implementation, the Euclidean Distance (ED) is used, and the top N matches 
that are kept denote those that have the distance from the query keypoint Qkc feature 
equal to those that have the distance from the query keypoint Qkc feature lower than a 
threshold t. This threshold is experimentally defined and controls the time expense of 
the search in the document space. Each keypoint that belongs to the top N matches is a 
document candidate coordinate origin similar to the query image. 

The spatial NNS for each keypoint that resides on the query image is addressed in 
the next stage. The spatial NNS is realized in a search area around each point. During 
the search, if there are one or more keypoints in the proximity of the query keypoint 
under consideration, the Euclidean distance between their descriptors is calculated and 
the minimum distance is kept. The previous procedure is repeated for each keypoint in 
the query image. The final similarity measure is the average of all the minimum dis-
tances. In the case that a local point in its proximity does not exist, then the query local 
point is ignored. 
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4 Conclusion 

This paper presents a toolbox that comprises effective approaches for Handwritten Text 
recognition (HTR) and Keyword spotting (KS) that result in effective historical hand-
written document analysis.  
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