
Digital Presentation and Preservation of Cultural and Scientific Heritage. Conference Proceedings. Vol. 10,
Sofia, Bulgaria: Institute of Mathematics and Informatics – BAS, 2020. ISSN: 1314-4006, eISSN: 2535-0366

Sentiment Analysis of Speech with Application to
Various Languages

Akash Apturkar1, Alexander I. Iliev1, 2, Amruth Anand1, Arush Oli1,
Swadesh Reddy Siddenki1, Vikram Reddy Meka1

1 SRH Berlin University, Charlottenburg, Germany
2 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

akash.apturkar1@gmail.com, ailiev@berkeley.edu,
oliarush1@gmail.com, swadeshsr7@gmail.com,

amruthanand24@gmail.com, mekavikramreddy@gmail.com

Abstract. In this paper we aim to explore and implement a modern speech recog-
nition system using Natural Language Processing (NLP) and sentiment analysis
that can be applied in the area of audio and text archive investigation from various
languages. To that end we developed a project that can be used to convert speech
to text and perform various analysis on a converted text. Furthermore, we focused
on recognizing different information such as names, emotions and also determine
the overall sentiment of a script. Furthermore, we perform web scraping for
names and organizations of importance used in speech. To achieve this, we used
Python with various specialized modules. In order to simplify the task of collect-
ing and storing audio inputs for processing we have developed an Android app
with connection to a cloud database. This methodology can easily be applied for
the purposes of digital presentation and preservation of cultural and scientific
heritage.

Keywords: Emotion Recognition, Speech Analysis, Language Processing, An-
droid, Digital Archives.

1 Introduction

The recent advancement in the field of speech recognition technology has opened the
doors to a vast number of use cases for speech based natural language processing
(NLP). According to Wikipedia the Google speech recognition API is one of the best
speech recognition tool, which can support more than 60 different languages (Google,
2020). The ‘SpeechRecognition’ module for Python can be used to easily integrate
Google speech recognition API in Python. The module ‘textblob’ for NLP can be used
to easily translate given text from one language to another. This functionality allows us
to perform natural language processing in multiple languages.

Sentiment analysis is a part of NLP that is mainly used for analysis of online reviews
or opinion analysis of current topics. For example: sentiment analysis can be used to

mailto:akash.apturkar1@gmail.com
mailto:mekavikramreddy@gmail.com

104

perform online opinion analysis of a certain stock on the stock market (Dev Shah,
2018). For this paper we aim to go beyond the general use case of sentiment analysis
and explore the possible use of sentiment analysis in the research of preserved literature
and audio archives in different languages. Huge archives of radio telecasts, recordings
of famous speeches, recitals exist in different countries with different languages. NLP
analysis of these archives can help in understand more about the time period and cul-
ture. For example: Sentiment analysis of radio broadcasts from world war 2 era from
different countries can reveal the general public sentiment at that time and place. Our
project can use audio inputs in different languages and can convert them to text using
the ‘SpeechRecognition’ module in Python, which can be translated for analysis using
‘textblob’ library for Python. This allows the project to be used for researching literature
and archives in different languages.

The major libraries that can be used for natural language processing and sentimental
analysis are ‘Natural Language ToolKit (NLTK)’ and ‘textblob’ in Python, which we
used in our project. For sentiment analysis, NLTK uses the Vader lexicon, which con-
sists of a list of words assign different values of polarity.

2 Problem Description and Challenges

To implement our project for use in literature and archives research we had to perform
the following tasks:

• Audio input was collected using a microphone or a pre-recorded audio file. The
language of the audio had to be detected and converted into a text string using
the speech recognition module in Python, which was then converted into
English for further analysis using ‘textblob’.

• Once we had the text we had to obtain the sentence structure tree by performing
tokenization, world lemmatization, parts of speech tagging and name entity
tagging using NLTK.

• Next we had to extract different emotional states from the text. Various
researches have used a number of basic emotions for areas such as: smart
ecosystems (Iliev & Stanchev, Smart Ecosystems through Voice and Images,
2020), information retrieval and recommendation (Iliev & Stanchev,
Information Retrieval and Recommendation Using Emotion from Speech
Signal, 2018), as well as content discovery and perceptual automation (Iliev,
Content Discovery Using Perceptual Automation, 2018), where a number of
feature vectors have been used as well (Iliev, Feature vectors for emotion
recognition in speech, 2016). A monograph on the topic of emotion recognition
through speech (Iliev, Emotion Recognition From Speech, 2012) provides a
summary of many of the basics in this area. As stated in ‘What is sentiment
analysis’, by (Jurafsky, January 27, 2016), the following affective states can be
extracted from a given text:
a. Emotion: brief organically synchronized, evaluaton of a major event: Eg-

angry, sad, joyful, fearful, ashamed, proud, elated

105

b. Mood: diffuse non-caused low-intensity long-duraton change in subjectve
feeling: Eg- cheerful, gloomy, irritable, listless, depressed, buoyant

c. Interpersonal stances: affectve stance toward another person in a specific
interacton: Eg- friendly, flirtatious, distant, cold, warm, supportve,
contemptuous

d. Attitudes: enduring, affectvely colored beliefs, dispositons towards objects
or persons: Eg: liking, loving, hating, valuing, desiring

e. Personality traits: stable personality dispositons and typical behavior
tendencies: Eg- nervous, anxious, reckless, morose, hos1le, jealous

For our project we focused on Emotion extraction from the text. We had to calculate
the overall sentiment of the text. Then we had to extract the names of people and or-
ganizations from the text. Finally, we performed web scraping to evaluate these names
with online result analysis.

One of the major challenges in NLP was working with synonyms. For example
words like Saturn, jaguar, or chip has several different meanings. In different contexts
or when used by different people the same term takes on varying referential significance
(Hutto & Gilbert, June 2014).

The other major problem in NLP, which specifically effects sentiment analysis, is
with detecting sarcasm. For example: “The restaurant was great in that it will make all
future meals seem more delicious” (Farhadloo & Erik, March 2016) is an example of a
sarcastic sentence, in which, although there is technically no negative term in the lan-
guage, it is intended to convey a negative sentiment. This poses a major challenge in
assigning negative polarity scores in sentiment analysis.

3 System Description

This system is used for analyzing the speech that is provided as an input and to provide
the sentiment of the speech is positive, negative or neutral. In addition, when the system
encounters the name in speech production, the web scraping for that name is also car-
ried out. We have also used graphs to show the number of emotions that are present in
a speech. In this system the input can be provided through three different modes:

• Opinion mode: In opinion mode the input is taken from the web scraping at the
respected topic we want to know about. The web scraping is carried out from
the online news available on the web and then analysis is carried out on the
given topic to see if the topic sentiment is positive, negative or neutral;

• Speech mode: The input in the speech mode is directly taken from the user’s
speech in the system. After the speech is provided the system gives us the result
for the sentiment analysis for that speech. Furthermore, if the system interacts
with the name from the speech then it will carry out the web scraping and the
analysis for that name as well;

• Remote mode: Remote mode is used to carry out the analysis of the speech that
is stored in the bucket. S3 Bucket is a cloud object storage services provided
by the Amazon where we store the speech mp3 file that is recorded through our
application. For this purpose we have use an AWS (S3) bucket to store the

106

speech through the application. When the user selects the remote mode then the
input is directly fetched from the S3 bucket and the analysis is carried out on
the stored speech.

3.1 Natural Language ToolKit

Natural Language ToolKit (NLTK) is a python package that works with human lan-
guage data. It is a free and open source natural language algorithm. There are more than
50 corpora and lexical analysis that provide easy-to-use interfaces like tokenizing, part-
of-speech (pos), sentiment analysis, tagging, name entity recognition.

After installing the NLTK package and all requirements were satisfied we used dif-
ferent corpora for analysis (Bird, Loper, & Klein, 2009).

Tokenize: Tokenize is a python package, which is used to break the text into simple

sentences and the sentences into the word. In our system we used tokenizing for break-
ing the sentence into words. We can see the code and its output below:

Pos tagging: Pos tagging stands for part of tagging, which is used for defining the
properties of the character or words. In other words to define either the word is noun,
adverb, adjective we use the pos tagging and its syntax and output is given below:

#for Pos
pos = pos_tag(words)
 print("\nOutput after parts of speech tagging: ")
 print(pos)

Lemmatization: Lemmatization is used to discard the unnecessary letters to provide

the root words. Likewise, we can see in the output the word ‘comedians’ is changed
into ‘comedian’:

#for lemmitization
lemmatized_words = []
 for word in words:
 word = WordNetLemmatizer().lemmatize(word)
 lemmatized_words.append(word)

#for tokenization
 words = word_tokenize(text, "english")
 print("Output after tokenization: ")
 print(words)

107

Name entities tagging: The below syntax is used for tagging the name entities. That
is when the speech is analysed; the name of a specific person is extracted and then sent
for analysis through web scraping:

#for entities tagging
name_entities = ne_chunk(pos)
 print("\nOutput after name entities tagging: ")
 print(name_entities)

Emotion recognition: After all of the tagging and pos are carried out we used the
syntax below to calculate the number of emotions that are present in the input. For that,
we grouped words with similar emotions, and then we sorted out the list of emotions
present in the input as seen in the output below. After the list of emotions was fully
fetched we counted the number of repeated emotions in the input:

Fig. 1. Emotion recognition output with bar graph

3.2 VADER Sentiment Analysis

VADER is known as Valence Aware Dictionary and sEntiment Reasoner. It is a lexicon
driven and a rule-based sentiment analysis tool. It is an open-source tool under MIT
License.

108

Vader is responsible for generating the positive, negative, neutral and compound
scores of the given input. Using these scores, the sentiment of a given input can be
depicted. Vader not only generates the positive and negative scores but it can also tell
us how positive or negative a given input is. Vader Lexicon has more than 9000 fea-
tures, where each feature has a rating in between -4 (extremely negative) and +4 (ex-
tremely positive).

3.3 Why VADER?

Though there are different tools for performing the sentiment analysis, we have chosen
Vader as it gives the polarity scores mentioned above, which are easy to analyse. Also,
Vader performs well in handling the special characters used in a sentence. This tool
does not require the training data and it is based on the valence scores in the lexicon.

3.4 Vader Sentiment

Vader uses SentimentIntensityAnalyser() object, it has a lexicon file with valence rat-
ings and some other set of rules. It uses a polarity_scores method to generate the polar-
ity scores:

The output from this code will be represented as: {'neg': 0.0, 'neu': 0.0, 'pos': 0.0,
'compound': 0.0}

Compound Score. Compound score is calculated by the sum of valence scores
of the input words and the sum is normalized between -1 (extreme negative)
and +1 (extreme positive).

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠

�(𝑠𝑠𝑠𝑠𝑠𝑠)2+15
 (1)

In the above formula, 15 is the standard value set by Vader to normalize the sum. Com-
pound score of the Vader also depends on many factors like punctuations, idioms, cap-
italized words etc. Based on the compound score, we can classify the sentences as pos-
itive, negative or neutral. Below are the conditions stated to classify:

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyser = SentimentIntensityAnalyzer()
sentiment = analyser.polarity_scores('INPUT TEXT')

sentiment = analyser.polarity_scores(text)
print(sentiment)
print("\nOverall Sentiment : ")
if sentiment['compound'] < -0.01:
 print("Negative")
elif sentiment['compound'] > 0.05:
 print("Positive")
else:
 print("Neutral")

109

Calculation of Compound Score. From the given input sentence, Vader looks
for the lexicon words and sum is calculated and normalized. For example, we
have an input string as ‘The king killed his soldier for committing a crime in
his kingdom’.

Table 1. Word count example

 Sentiment Words Count
positive committing 01
negative killed, crime 02
neutral All other words are neutral 09

The input sentence is categorized as one of the above where the sentence is tokenized
and the individual words are classified as positive, neutral and negative. Here, only the
words that are positive and negative are considered. So, we have killed and crime as
negative and committing as a positive word. These three words have a score of -3.5, -
2.5 and +0.3 respectively, when summed up we get a total of -5.7. This sum is normal-
ized using the Compound Score formula as below:

From the output, the compound score is: - 0.8271. Comparing this output with Vader
analysis output as shown below we notice the same result:

3.5 Speech Recognition

Speech recognition is the subfield of computer science that enables the recognition and
translation of human spoken speech into the text format. As our project revolved mainly
around sentiment analysis through speech, we used specific Python packages for each
part of the speech processing process. Firstly, we used the speechrecognition module
for recording the speech through the device’s microphone and then we converted it to
a text string. Then, we imported the gtts (google-to-text-speech) package for text-to-
speech conversion. Then we used the playsound package in order to play the mp3 files.

import math
def normalize(score,alpha=15):
 ss = score/math.sqrt((score*score)+alpha)
 return ss
normalize(-5.7)

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyser = SentimentIntensityAnalyzer()
sentiment = analyser.polarity_scores('the king killed his soldier for
committing a crime in his kingdom')
print(sentiment)

110

This function took the input through the microphone and used the google speech recog-
nition system to convert the voice into a text message. Furthermore, we have used text-
blob to detect and translate the text language:

4 Web Scraping

Once we have extracted the names of people and organizations from speech we run the
web scraping script for each of these names. The script can be used to find online results
on Google, Google News, Twitter, etc for the names and return a string of text for
analysis. This functionality can be useful while researching and analysing archives to
extract names of important people and organizations from historical text and evaluate
the online opinion for them in news articles, etc.

We used a function for web scraping through the first page of Google news for the
‘term’ that is passed as a parameter and the result is shown below. There we have used
the Python module ‘beautifulsoup4’ to traverse HTML output and extract news head-
lines from the page. Once we received the HTML response, we found all the tags with
class name "BNeawe s3v9rd AP7Wnd" that held the news headlines. Then we used
‘textblob’ to extract only the text from these tags. Next, we detected the language of
this extracted text using the method blob.detect_language() from textblob and if another
language other than English was detected we used the ‘blob.translste()’ method to
translate it to English. This function returned a string called out_str inside which all the
headlines were concatenated. Furthermore, their sentiment analysis can be applied to
this out_str. The result below shows a function script & HTML response saved in var-
iable ‘soup’:

The output below shows the production after sentiment analysis when the name
Charlie Chaplin is passed as the parameter term to the function web_scrape():

111

5 App Development

As we were in the hunt to create an ecosystem revolving around emotion recognition,
there was no better source than a mobile device that could be used to record the input.
In the present world the project or concept will connect to the masses quickly with a
mobile application, which was the main reason to incorporate this feature. The app has
given a whole new dimension for the project as it came with a lot of additional features
and advantages. This app has some important features that sets it apart from conven-
tional voice recorders. We built this app on Python 3, using the Kivy library. It was
very convenient to deploy the app on Android as Kivy has a dedicated launcher where
we could load the project.

Steps to load the project: We created a project file by the name Kivy in our android
internal storage. In that project file we created a folder by the same name then we up-
loaded all the files that were used to build the app. The files included main.py and all
the supporting subordinate files with one text file by the name android.txt. This an-
droid.txt file holds details like Title, Author and Orientation.

Fig. 2. This is the GUI of the app

Additional features apart from conventional features are:
• This app consisted of features like: real-time waveforms, recording, playback,

delete etc.;
• The app saved the audio files into amazon S3 bucket, which was accessed for

further proceedings;
• The app revealed the emotion of the speaker soon after the recording ended;
• The audio was converted into text and was saved in a text file for processing.

Steps for saving the files into S3 bucket on real time:
• We created an AWS account and created a file in the S3 bucket and set it to

public;
• We installed AWSCLI using pip and connected awscli with the main account;
• The credentials used to connect to our AWS account were:

a. AWSAccessKeyId - <ENTER AWS S3 ACCESS KEY>

112

b. AWSSecretKey - <ENTER AWS S3 SECRET KEY>
c. Default Regional Name - eu-central-1
d. S3 bucketname - <ENTER S3 BUCKET NAME>
e. File name - my.wav

• With these credentials we accessed the file for further processing.
For these processes we used the boto3 library, which helped us upload/update files

to AWS from Python code.

6 Model Accuracy Testing

Since used the compound polarity score from vader.SentimentIntensityAnalyzer()
method from NLTK we wanted to test the model’s accuracy in determining positive,
negative and neutral sentiments. The ideal scores for determining the sentiment as
given in the documentation for Vader (Hutto & Gilbert, June 2014) are as follows:

We tried to determine the ideal values of compound score for positive negative and
neutral sentiment by using the following script to pass different values of threshold
compound score and check if the model can accurately determine weather the sentences
passed are positive or negative. For this we used a set of 5332 positive and negative
sentences each (Kinsley, 2020). After installing and importing all dependencies we
passed the values in range zero to 0.5 with the step size of 0.1. We passed positive
values as threshold to determine positive accuracy and negative values as threshold for
negative accuracy like this: first we opened the text document with 5332 positive sen-
tences. For each sentence correctly identified by the model as positive the pos_correct
is increased by one and for each sentence can the pos_count is increased by one. To
determine the percentage accuracy we divide pos_correct by pos_count and multiply
by 100. The same process is followed to calculate negative accuracy. The results for
part of the output of accuracy testing are shown below. From them we can see that as
we divert from the threshold values zero, while the positive accuracy remains accepta-
ble the negative accuracy decreases rapidly. This is because the model cannot correctly
classify sarcastic sentences as negative sentences and instead classifies them as neutral.
Hence, we decided, to set the threshold of negative polarity score to a value closer to
zero.

For our project we used these threshold values:
• positive sentiment: compound score >= 0.05
• neutral sentiment: (compound score > -0.01) and (compound score < 0.05)
• negative sentiment: compound score <= -0.01

113

7 Results and Discussion

The main objective of our research project was to build Smart Speech Ecosystem,
which mainly uses the Natural Language Tool Kit (NLTK). The key result obtained
from this research is ideal value for the compound polarity.

• Positive Sentiment: compound score >= 0.5
• Neutral Sentiment: (compound score >= -0.01) and (compound score < 0.05)
• Negative Sentiment: compound score <= -0.01

A. Opinion Mode: In opinion mode, the input we had taken from the user performed
web scraping using beautiful soup method that extracts headlines from Google
and here is the output:

Mode Selection

User input

Headlines
extracted from
Google

Online opinion
analysis

114

B. Speech Mode: In speech mode we took the input from the user and processed
through Google-Text-To-Speech (GTTS) it converted the user speech into text
and performs sentiment analysis as follows:
• word tokenization breaks a piece of text into words:

• then we used as a function to perform parts of speech tagging (PoS) input

and assigns a certain tag to the word list:

• the output of PoS tagging was passed as an input to the word lemmatiza-

tion, which splits the text into individual words based on their root words;
• in name entity tagging the input is taken from word lemmatization, from

name parser library (Gulbranson, 2018) which we are importing. The Hu-
manName().last and HumanName().first methods were used to find the last
and first names, also forming an entity tree:

Then we represented the Name entities tagging like this:

• from the Human Name library, a name parser method was used to find the

last and first names then an entity tree was formed. Figure 3 below shows
the sentence structure tree, which is cropped for better view:

115

Fig. 3. This is the sentence structure tree (cropped)

• we then found the list of emotions from the speech and represented through
data visualization;

• we performed the overall sentiment analysis to the above speech and we
got the positive, negative, neutral and compound scores for the speech:

• based the results of sentiment analysis we conducted online news search

on the particular person.
C. Remote Mode: In this research paper we had one more interesting feature of

Android connect application, which was developed using the Kivy library. The
input from the app was taken and connected to Amazon Web Service (AWS).
The data was stored in a bucket through boto3 method and connected to our
training model that performed online analysis and calculated the compound
score accordingly.

8 Conclusion and Future Work

In this research, sentiment analysis of text through speech recognition was tested using
the natural language toolkit (NLTK) and Kivy. We firstly took the speech input and
then converted it to text through GTTS. Then we performed the sentiment analysis us-
ing word tokenisation, parts of speech, lemmatization, entity tagging and also, we used
Human Name library for identifying first names and last names. In the next portion of
our work, we performed web scraping for deeper analysis of the text. Finally, online
opinion analysis was conducted through sentiment intensity analyser to get their posi-
tive, negative, neutral scores of the text in order to calculate compound polarity. Fur-
thermore, we had displayed the data visualization chart how the emotion was carried
out. One of the most important things we developed was connecting remote mode to
our training model. We used amazon web services as a remote mode, connected by
importing boto3 to the target model. The NLTK was used to achieve this sentiment
analysis. This system can be successfully embedded in areas such as discovery and
preservation of cultural and scientific heritage as well any kind of investigative and
analytical work that deals with recorded speech and text.

116

To take a step further, we are planning to import data from different languages as it
comes available to us. We are also focusing on historical data, ancient books in partic-
ular in order to perform deeper analysis of the content and specific historical facts. In
addition, we are planning to develop multimedia attributes like video capturing of the
historical data and photos of the ancient figures (kings, queens, etc.) based on the re-
quirements we set for the project.

Acknowledgments

This work was partially supported by the Bulgarian Ministry of Education and Science
under National Scientific Program “Information and Communication Technologies for
a Single Digital Market in Science, Education and Security”, approved by DCM No
577, 17 August 2018.

References

Google. (05 March 2020). Cloud Speech-to-Text API - Release notes. Accessed at:
https://cloud.google.com/speech-to-text/docs/release-notes.

Dev Shah, H. I. (December 2018). Predicting the Effects of News Sentiments on the
Stock Market. Свалено от arXiv.org

Iliev, A. I., & Stanchev, P. L. (2020). Smart Ecosystems through Voice and Images.
Proceedings of 35th International Conference on Computers and Their
Applications, CATA 2020. 69, pp. 256-263. San Francisco, CA, USA: EPiC Series
in Computing.

Iliev, A. I., & Stanchev, P. L. (2018). Information Retrieval and Recommendation
Using Emotion from Speech Signal. IEEE Conference on Multimedia Information
Processing and Retrieval (pp. 222-225). Miami, FL, USA: IEEE.

Iliev, A. I. (2018). Content Discovery Using Perceptual Automation. Proceedings of
the 10th International Conference on Management of Digital EcoSystems
(MEDES’18) (pp. 233-238). Tokyo, Japan: ACM, New York, NY-USA.

Iliev, A. I. (2016). Feature vectors for emotion recognition in speech. National
Informatics Conference (pp. 225-238). Sofia, Bulgaria: Bulgarian Academy of
Sciences, Mathematics and Informatics Department.

Iliev, A. I. (2012). Emotion Recognition From Speech (Vol. 1). Lambert Academic
Publishing.

Jurafsky, D. (January 27, 2016). What is sentiment analysis. Stanford University.
Accessed at: https://web.stanford.edu/class/cs124/lec/sentiment.pdf.

Hutto, C., & Gilbert, E. E. (June 2014). VADER: A Parsimoni on Weblogs and Social
Media. VADER: A Parsimoni on Weblogs and Social Media. Ann Harbor, MI, USA:
ICWSM-14. Accessed at: https://pythonprogramming.net/sentiment-analysis-
python-textblob-vader/.

Farhadloo, M., & Erik, R. (March 2016). Fundamentals of Sentiment Analysis and Its
Applications. In W. Pedrycz, & S.-M. Chen (Eds.), Sentiment Analysis and Ontology
Engineering. Springer International Publishing.

https://web.stanford.edu/class/cs124/lec/sentiment.pdf
https://pythonprogramming.net/sentiment-analysis-python-textblob-vader/
https://pythonprogramming.net/sentiment-analysis-python-textblob-vader/

117

Bird, S., Loper, E., & Klein, E. (2009). Natural Language Processing with Python.
O’Reilly Media Inc.

Kinsley, H. (n.d.). Out of the Box Sentiment Analysis options with Python using VADER
Sentiment and TextBlob. Retrieved June 10, 2020, Accessed at:
PythonProgramming.net.

Gulbranson, D. (2018). Nameparser Documentation Release 1.0.2. Retrieved June 10,
2020, Accessed at: readthedocs.org.

Received: June 10, 2020
Reviewed: June 25, 2020
Finally Accepted: June 30, 2020

118

	1 Introduction
	2 Problem Description and Challenges
	3 System Description
	3.1 Natural Language ToolKit
	3.2 VADER Sentiment Analysis
	3.3 Why VADER?
	3.4 Vader Sentiment
	Compound Score. Compound score is calculated by the sum of valence scores of the input words and the sum is normalized between -1 (extreme negative) and +1 (extreme positive).
	Calculation of Compound Score. From the given input sentence, Vader looks for the lexicon words and sum is calculated and normalized. For example, we have an input string as ‘The king killed his soldier for committing a crime in his kingdom’.
	3.5 Speech Recognition

	4 Web Scraping
	5 App Development
	6 Model Accuracy Testing
	7 Results and Discussion
	8 Conclusion and Future Work
	Acknowledgments
	References

