Towards Modeling of Digital Ecosystems for Cultural Heritage

Danail Dochev¹, Radoslav Pavlov², Desislava Paneva-Marinova^{2[0000-0001-5998-687X]}, Lilia Pavlova³

¹ Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 25A, G. Bonchev Str., 1113, Sofia, Bulgaria

² Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8, G. Bonchev Str., 1113, Sofia, Bulgaria

³ Laboratory of Telematics, Bulgarian Academy of Sciences, 8, G. Bonchev Str., 1113, Sofia, Bulgaria

Abstract. The aim of the present paper is to give a brief information about the innovative functionalities and potential of the Digital Ecosystems for Cultural Heritage. The main features of digital ecosystems are shortly presented. A brief overview of some recent European projects dedicated to research and development of digital cultural ecosystems sketches their specifics, reveal some common characteristics and some development trends.

Keywords: Digital Ecosystems, Cultural Heritage, Digital Cultural Assets

1 Introduction

In the last decades, the digital ecosystem paradigm is one of the main topics actively analysed by IT researchers and practitioners. The digital ecosystems are meant to connect people, data, processes and things by the shared use of digital platforms. The idea is to create a collection of flexible services that can quickly be adapted to the dynamically changing needs. From the users' point of view, an ecosystem refers to enrichment and more convenient use of different communication channels on which they access and publish content.

The aim of the present paper is to give a glimpse on the innovative functionalities and potential of the Digital Ecosystems for Cultural Heritage concerning digital content production, its management, distribution, aggregation, enrichment and reuse. It addresses wider audience of readers, professionally connected with cultural institutions.

Digital Presentation and Preservation of Cultural and Scientific Heritage. Conference Proceedings. Vol. 9, Sofia, Bulgaria: Institute of Mathematics and Informatics – BAS, 2019. ISSN: 1314-4006, eISSN: 2535-0366

2 Digital Ecosystems Architectures

The metaphor of digital ecosystem was coined in the beginning of XXI century to focus on system properties of self-organisation, scalability and sustainability normally connected with natural ecosystems. The usual definition of a digital ecosystem includes primarily features like sustainability, bounded information asymmetry, risk control and gracious failure. These features are expected to be achieved mainly by self-organization of the digital ecosystem, rather than by achieving explicit design goals as in conventional development of IT systems.

Briscoe and De Wilde (Briscoe & Wilde, 2006) propose the Digital Ecosystem architecture to be regarded as extension of Service-Oriented Architecture (SOAs) with distributed evolutionary computing, allowing services to recombine and evolve over time, constantly seeking to improve their effectiveness for the user base. Individuals within a Digital Ecosystem are applications (groups of services), created in response to user requests by using evolutionary optimisation to aggregate the services.

Digital ecosystems can be regarded as nets underneath the emerging technologies applied in the Digital Platforms — microservices, containerization and serverless computing are all components that fit within specific, decentralized business ecosystems.

Microservice architecture organizes an application as a collection of loosely coupled services. These services should be made as granular as possible to keep relative simplicity within each service module. Monolithic applications locate all their functions in a single structure that is based on a relational database while microservices split individual functions into different containers.

Platform as a service, or PaaS, is cloud computing model that provides users with hosted development kits, database tools, and application management capabilities. In this approach third-party vendors provide users with virtual resources to build, deploy, and launch software applications, thereby reducing the need for back-end software development.

Infrastructure as a service (IaaS), is a cloud computing model that provides users with hosted computing infrastructure. In IaaS model third-party vendors provide users with virtual resources (server space, network connections and IP addresses) to host, build, test, and scale websites and applications. Companies may use IaaS clouds as scalable platforms for new applications or to expand existing applications to larger audiences (Briscoe & Marinos, 2009) (g2crowd learning hub, n.d.).

This type of distributed network allows technologies like blockchain, machine learning as a service (MLaaS) or even internet of things (IoT)-connected devices to exist as components within the ecosystem, leading to more secure and intelligent networks that can be run and managed on third-party platforms.

Extensive usage of artificial intelligence and conversational systems, like messaging platforms and virtual assistants, and including them in a digital ecosystem to enrich the way customers communicate, seems to be main trend in current developments (Hardin, 2018).

3 Ecosystems of Digital Cultural Assets

The paradigm of *ecosystems for digital cultural assets* (also called digital cultural ecosystems, DCEs) appears to respond to the growing willingness to share the wealth of cultural resources and continuous research and study of cultural treasures. These systems virtually assemble various digital collections, archives, virtual museums, digital libraries and cultural heritage sites in order to facilitate the access to their resources, bringing cultural content to new audiences in novel ways (Paneva-Marinova, Pavlov, & Kotuzov, Approach for Analysis and Improved Usage of Digital Cultural Assets for Learning Purposes, 2017).

In nature, an ecosystem is an area where organisms interact with one other as well as with the non-living parts of the environment. In the digital cultural ecosystem, various "digital organisms" (*viz.* collections, archives, virtual museums, digital libraries, cultural heritage site, etc.) also interact with one another as well as with the living part of the environment (*viz.* users). Formally, a digital cultural ecosystem can be huge, covering joint content management systems of one country or a region (similarly to a large forest or lake in the nature), but it can also be small, such as a virtual museum or a private collection of artefacts (the nature analogues: a puddle of water or only a tree). "Digital organisms" "work" through services and tools to satisfy their users. DCEs aggregate heterogeneous resources leaning on interoperability support of its building blocks.

The European activities in this field are promoted and supported by the Horizon 2020 programme of EC H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity in the priority REFLECTIVE-6-2015 - Innovation ecosystems of digital cultural assets. Activities under this programme aim to:

- "stimulate new research perspectives for the humanities and social science communities, promote further the use of digital cultural heritage allowing its reinterpretation towards the development of a new shared culture in Europe.
- provide innovative and creative methods for approaching cultural assets and generate applications and services to access and exploit the rich and diverse European digital cultural heritage in a sustainable way.
- foster collaboration between those with primary expertise in the interpretation of cultural data and researchers with complementary expertise in digital and interactive frameworks" (European Programme Digital Cultural Assets, n.d.).

In the Bulgarian NSF project "Innovation Ecosystems of Digital Cultural Assets" (CultEcoSys) (CultEcoSys-Project, 2017) we perceive digital libraries (DLs), virtual museums, cultural websites, *etc.* as small ecosystems for digital cultural assets. These environments provide to their users wide range of applicable services and tools for reusing and repurposing digital assets (or objects, DCOs), paving the way for wider exploitation of cultural resources and boosting innovation (Paneva-Marinova & Pavlov, R., 2018). Fig. 1 depicts user's activities for content manipulation in digital cultural ecosystem. Fig. 2 depicts its main content units and flow.

Fig. 1. DCEs user's activities

Fig. 2. DCEs content units and flow

4 European Projects Dedicated to Research and Development of Digital Cultural Ecosystems

The aim of the present section is to give a brief overview of some recent European projects dedicated to research and development of digital cultural ecosystems and to sketch their specifics and reveal some common features. The following projects are selected to be regarded as they are to some extent representative for the current state-of-the-art: "Accessible Resources for Cultural Heritage EcoSystems" (ARCHES) (ARCHES, 2016), "Empowering Reuse of Digital Cultural Heritage in Context-aware Crosscuts of European History" (CrossCult) (CROSSCULT, 2016), "Methods for Managing Audiovisual Data" (MeMAD) (MeMAD, n.d.), "Smart Assets for re-Use in Creative Environments" (SAUCE) (SAUCE, n.d.), "Organizing, Promoting and ENabling HEritage Re-use through Inclusion, Technology, Access, Governance and Empowerment" (OpenHeritage) (OpenHeritage, n.d.). They are covered in the table below with brief information about:

- number and national variety of the project partners;
- project main objectives;
- project focus on specific features specific user groups, given types of digital cultural assets, specific social impact, specific IT methods and tools etc.;
- addressing interoperability among digital collections;
- planned main project results.

Project, period, programme	Partners	Objectives	Focus on	Interoperability among digital collections	Planned results
ARCHES - Accessible	12 partners	Research analysis and	More inclusive	Considering the	Online accessible software
Resources for Cultural	from Austria.	development of innovative	cultural	Conceptual Reference	platform, applications for
Heritage EcoSystems.	UK, Spain,	applications, functionalities	environments for	Model by the Int.	handheld devices and
2016 – 2019	Serbia	and experiences based on	those with	Committee of	multisensory activities using
		reuse and redevelopment of	differences and	Documentation of the	state of the art technologies
REFLECTIVE-6-2015:		existing digital resources.	difficulties	Int. Council of	(augmented reality, avatars,
Innovation		Scenarios at 6 big museums,	associated with	Museums (CIDOC-	relief printers and models,
ecosystems of digital		engagement with broader	perception,	CRM), Lightweight	context-sensitive tactile audio
cultural assets		audiences (e.g. children, the	memory,	Information Describing	guides, metadata and
		elderly, other potentially	cognition and	Objects (LIDO),	advanced image processing
		marginalised groups) and	communication	Europeana Data Model	techniques)
		extension to other sectors,		(EDM).	
		mainly education and tourism.			
CrossCult -	10 main	Creating unique cross-border	Lowering cultural	General datasets:	CrossCult electronic platform
Empowering reuse of	partners from	perspectives by connecting	EU barriers.	upper-level ontology	integrating technological
digital cultural	Luxembourg,	existing digital historical	Helping the better	for cultural heritage;	modules for:
heritage in context-	Greece, Spain,	resources and by creating new	understanding	venue ontology	User Profiling;
aware crosscuts of	France, Italy,	ones through the participation	and re-	representing the	Recommenders;
European history	UK, Finland,	of the public.	interpretation of	venues experiences,	User trackers;
2016 - 2019	Malta.	Providing long-lasting	European history	their infrastructure and	Association Discovery;
	10 associated	experiences of social learning	to be understood	exhibition	Context Analysis Services;
REFLECTIVE-6-2015:	venues and	and entertainment.	in a wider	characteristics;	CrossCult Social Networking
Innovation	companies		context.	user ontology for	Services;
ecosystems of digital				different user	Visualization and user
cultural assets				modelling approaches;	experience elements.
				classifications of terms	
				and vocabularies.	

MeMAD - Methods for	9 partners	Develop novel methods and	Media companies	Utilisation of artificial	Planned use cases:
Managing Audiovisual	from Finland,	tools for digital storytelling.	that want to	intelligence in the	Content delivery services for
Data	France, UK,	Deliver methods and tools to	utilise automatic	media industry,	the re-use by end-users/
2018-2020	Belgium.	expand the size of media	content	especially in the	clients through media
		audiences.	descriptions to	description, translation	indexing and video
HORIZON 2020 ICT		Develop an improved scientific	help the	and subtitling of video	description.
		understanding of multimodal	management of	content.	Creation, re-use and re-
		and multilingual media	large video	Developing automatic	purposing of the new footage
		content analysis, linking and	collections and	language-based	and archived content in
		consumption.	enable the reuse	methods for managing,	digital media production
		Deliver object models and	and adaptation of	accessing and	through media indexing and
		formal languages, distribution	previous	publishing pre-existing	video description.
		protocols and display tools for	materials for	Digital Content.	Improving user experience
		enriched audiovisual data.	completely new		with media enrichment by
			purposes within		linking to external resources.
			the Creative		Automated subtitling/
			Industries,		captioning and audio
			especially in TV		description.
			broadcasting and		
			in on-demand		
			media services.		
SAUCE - Smart Assets	9 partners	To produce, pilot and	Research and use	Research and develop a	Create tools to unlock value
for re-Use in Creative	from Spain,	demonstrate a set of	of new cutting-	framework and tools	in previously-created content
Environments	Germany, UK,	professional tools and	edge technologies	for automatically	by editing or automatically
2018-2020	Ireland, Czech	techniques that reduce the	like light-fields to	classifying, validating	adapting its properties (e.g.
	Republic,	costs for the production of	address media	and finding smart	appearance, scale, motion) to
HORIZON 2020 ICT	Switzerland	enhanced digital content for	production chain	assets, using deep	the current production needs.
		the creative industries by	steps that lose	learning and semantic	Create tools to allow content
		increasing the potential for re-	information (e.g.	labelling techniques to	to be more easily re-used and
		purposing and re-use of	artistic effects like	describe and draw	re-purposed, by developing
		content.	reduced depth of	inferences from two	light-field technology for the
		To develop real-time control	field and motion	dimensional and three-	creative industries in terms of
		systems for authoring	blur, or the	dimensional data.	capture, storage, distribution
		animated content using smart	integration of		and processing.

		assets, automatically synthesizing new scenes from existing ones and integrating smart assets into virtual production scenarios with editable cameras and lights.	synthetic content into captured natural scenes).	Research and develop a framework and tools for automatic transfor- mation and adaptation of smart assets to new contexts, purposes, users and environments, and for synthesis of new smart assets from existing one.	Create management, animation and production tools to keep digital content accessible, discoverable and malleable by using procedural techniques and high level semantic knowledge.
OpenHeritage – Organizing, Promoting and ENabling HEritage Re-use through Inclusion, Technology, Access, Governance and Empowerment 2018-2022 HORIZON 2020	16 partners from Hungary, UK, Belgium, Austria, Italy, Germany, Spain, Poland, Portugal,	16 partners To identify and test the best from Hungary, practices of adaptive heritage UK, Belgium, re-use in Europe. Austria, Italy, To develop and test an Germany, inclusive governance model Spain, Poland, and a supporting toolbox for Portugal, heritage assets.	Creation of sustainable models of heritage asset management by inclusive governance of governance of cultural heritage sites together with development of heritage communities.	The work with existing digital collections is not a specific objective of the project.	Practices – online database of current practices and policies listing national regulations, connecting them with diverse local initiatives, documenting the work in the sites with pictures, videos and a short analysis. Heritage Labs – online platforms to create/ strengthen communities around the Cooperative Heritage Labs (adaptive reuse laboratories of OpenHeritage).

5 Conclusions

As it has to be expected the project specifics (focus on user groups, specific digital assets, specific image processing, diverse communication channels etc.) have substantial influence on the functional requirements, developed architectures and repertoire of offered services.

All recent projects apply modern innovative IT technologies – e.g. virtual and augmented reality, geolocalisation, semantic web instruments, use of Linked Data resources, metadata, avatars, relief printers and models, context-sensitive tactile audio guides, advanced image processing techniques.

Most of the research and development efforts are especially directed to services helping not just to reuse but also to repurpose digital cultural assets for different needs. To ensure such functionalities an advanced digital asset management system is needed, which facilitates secure storage, searchable metadata, file conversions, and easy sharing of digital assets (Holmes, 2018).

Participants in the international projects under consideration are renowned European museums with big volumes of digitized exhibits organized in various digital collections. So special attention is paid on development and practical application of different semantic descriptions, metadata schemes and features extracting mechanisms (ARCHES, D1.2 "Data Management Plan – 1st version", 2017) (CROSSCULT, D2.4 "Refined digital cultural resource data & data structure", 2018) (CROSSCULT, D2.5 "Upper-level Cultural Heritage Ontology", 2018) (MeMED, 2018) (Padfield, Kontiza, Bikakis, & Vlachidis, 2019). The aim is to form a kind of smart search framework to allow third party asset management systems to publish data to the search framework for ingestion, classification, transformation and search. The data architecture of a smart search framework should be extensible and interoperable with third party ontologies and domains to support tagging, classification and reasoning across those domains. This should contribute to achieve "smarter" content by making it fully adaptive: adaptive to context, to purpose, to the user and to the production environment (SAUCE, D4.1 "Smart Search Framework", 2018).

Acknowledgements.

This work is partly supported by the Bulgarian NSF under the research project №DN02/06/15.12.2016 "Concepts and Models for Innovation Ecosystems of Digital Cultural Assets".

References

ARCHES. (2016). Accessible Resources for Cultural Heritage EcoSystems, project web page. Retrieved March 20, 2019, from http://arches-project.eu/ ARCHES. (2017). D1.2 "Data Management Plan – 1st version".

- Briscoe, G., & Marinos, A. (2009). Digital ecosystems in the clouds: towards community cloud computing. *IEEE*, (corp. ed.) 2009 3rd IEEE International Conference on Digital Ecosystems and Technologies (DEST 2009) (pp. 103-108). New York, USA: Institute of Electrical and Electronics Engineers (IEEE).
- Briscoe, G., & Wilde, P. D. (2006). Digital Ecosystems: Evolving Service-Oriented Architectures. *IEEE First International Conference on Bio Inspired mOdels of NETwork, Information and Computing Systems (BIONETICS).* Retrieved from https://arxiv.org/abs/0712.4102
- CROSSCULT. (2016). Empowering reuse of digital cultural heritage in context-aware crosscuts of European history, project web site. Retrieved March 20, 2019, from http://www.crosscult.eu/
- CROSSCULT. (2018). D2.4 "Refined digital cultural resource data & data structure".
- CROSSCULT. (2018). D2.5 "Upper-level Cultural Heritage Ontology".
- CultEcoSys-Project. (2017). Concepts and models for innovation ecosystems of digital cultural assets, No. DN02/06/15.12.2016 (project web page). Retrieved June 1, 2019, from http://cultecosys.math.bas.bg
- *European Programme Digital Cultural Assets*. (n.d.). Retrieved June 1, 2019, from https://europlan.pixel-online.org/ news.php?id=260
- *g2crowd learning hub.* (n.d.). Retrieved May 10, 2019, from https://learn.g2crowd.com/microservices
- Hardin, T. (2018, January 18). *Digital Platform Trends: The Digital Ecosystem*. Retrieved May 20, 2019, from https://learn.g2.com/trends/digital-ecosystem
- Holmes, N. (2018). The Guide to Repurposing Content with Digital Asset Management. Retrieved June 1, 2019, from https://www.widen.com/blog/the-difference-betweenreusing-and-repurposing-digital-assets
- MeMAD. (n.d.). *Project "Methods for Managing Audiovisual Data"*. Retrieved June 2019, from https://memad.eu/
- MeMED. (2018). D2.1 "Libraries and tools for multimodal content analysis".
- OpenHeritage. (n.d.). Project "Organizing, Promoting and ENabling HEritage Re-use through Inclusion, Tech-nology, Access, Governance and Empowerment". Retrieved June 1, 2019, from http://eutropian.org/open-heritage/
- Padfield, J., Kontiza, K., Bikakis, A., & Vlachidis, A. (2019). Semantic Representation and Location Provenance of Cultural Heritage Information: the National Gallery Collection in London. *Heritage*, 648-665.
- Paneva-Marinova, D., & Pavlov, R. (2018). Improving Learner Experience within Educational Nooks in Digital Libraries. In I. Bouchrika, N. Harrati, & P. Vu, *Learner Experience and Usability in Online Education* (pp. 174-193). Hershey, PA, USA: IGI Global.
- Paneva-Marinova, D., Pavlov, R., & Kotuzov, N. (2017). Approach for Analysis and Improved Usage of Digital Cultural Assets for Learning Purposes. *International journal "Cybernetics and Information Technologies"*, 17(3), 140-151.

SAUCE. (2018). D4.1 "Smart Search Framework".

SAUCE. (n.d.). *Project "Smart Assets for re-Use in Creative Environments"*. Retrieved June 1, 2019, from https://www.sauceproject.eu/

Received: June 10 2019 Reviewed: June 30, 2019 Finally Accepted: July 10, 2019